главная               


Data Mining

Глава 1 Понятие Машинного обучения


Курс знакомит слушателей с технологией Data Mining, подробно рассматриваются методы, инструментальные средства и применение Data Mining. Описание каждого метода сопровождается конкретным примером его использования.

Обсуждаются отличия Data Mining от классических статистических методов анализа и OLAP-систем, рассматриваются типы закономерностей, выявляемых Data Mining (ассоциация, классификация, последовательность, кластеризация, прогнозирование). Описывается сфера применения Data Mining. Вводится понятие Web Mining. Подробно рассматриваются методы Data Mining: нейронные сети, деревья решений, методы ограниченного перебора, генетические алгоритмы, эволюционное программирование, кластерные модели, комбинированные методы. Знакомство с каждым методом проиллюстрировано решением практической задачи с помощью инструментального средства, использующего технологию Data Mining.Излагаются основные концепции хранилищ данных и места Data Mining в их архитектуре. Вводятся понятия OLTP, OLAP, ROLAP, MOLAP.Обсуждается процесс анализа данных с помощью технологии Data Mining. Подробно рассматриваются этапы этого процесса. Анализируется рынок аналитического программного обеспечения, описываются продукты от ведущих производителей Data Mining, обсуждаются их возможности.

Цель Познакомить слушателей с теоретическими аспектами технологии Data Mining, методами, возможностью их применения, дать практические навыки по использованию инструментальных средств Data Mining

Предварительные знания Желательны, но не обязательны знания по информатике, основам теории баз данных, знания по математике (в пределах начальных курсов ВУЗа), технологии обработки информации.

"За последние годы, когда, стремясь к повышению эффективности и прибыльности бизнеса, при создании БД все стали пользоваться средствами обработки цифровой информации, появился и побочный продукт этой активности -горы собранных данных: И вот все больше распространяется идея о том, что эти горы полны золота".

В прошлом процесс добычи золота в горной промышленности состоял из выбора участка земли и дальнейшего ее просеивания большое количество раз. Иногда искатель находил несколько ценных самородков или мог натолкнуться на золотоносную жилу, но в большинстве случаев он вообще ничего не находил и шел дальше к другому многообещающему месту или же вовсе бросал добывать золото, считая это занятие напрасной тратой времени.

Сегодня появились новые научные методы и специализированные инструменты, сделавшие горную промышленность намного более точной и производительной. Data Mining для данных развилась почти таким же способом. Старые методы, применявшиеся математиками и статистиками, отнимали много времени, чтобы в результате получить конструктивную и полезную информацию.

Сегодня на рынке представлено множество инструментов, включающих различные методы, которые делают Data Mining прибыльным делом, все более доступным для большинства компаний.

Термин Data Mining получил свое название из двух понятий: поиска ценной информации в большой базе данных (data) и добычи горной руды (mining). Оба процесса требуют или просеивания огромного количества сырого материала, или разумного исследования и поиска искомых ценностей.

Термин Data Mining часто переводится как добыча данных, извлечение информации, раскопка данных, интеллектуальный анализ данных, средства поиска закономерностей, извлечение знаний, анализ шаблонов, "извлечение зерен знаний из гор данных", раскопка знаний в базах данных, информационная проходка данных, "промывание" данных. Понятие "обнаружение знаний в базах данных" (Knowledge Discovery in Databases, KDD) можно считать синонимом Data Mining [1].





Содержание