Обсуждаются отличия Data Mining от классических статистических методов анализа и OLAP-систем, рассматриваются типы закономерностей, выявляемых Data Mining (ассоциация, классификация, последовательность, кластеризация, прогнозирование). Описывается сфера применения Data Mining. Вводится понятие Web Mining. Подробно рассматриваются методы Data Mining: нейронные сети, деревья решений, методы ограниченного перебора, генетические алгоритмы, эволюционное программирование, кластерные модели, комбинированные методы. Знакомство с каждым методом проиллюстрировано решением практической задачи с помощью инструментального средства, использующего технологию Data Mining.Излагаются основные концепции хранилищ данных и места Data Mining в их архитектуре. Вводятся понятия OLTP, OLAP, ROLAP, MOLAP.Обсуждается процесс анализа данных с помощью технологии Data Mining. Подробно рассматриваются этапы этого процесса. Анализируется рынок аналитического программного обеспечения, описываются продукты от ведущих производителей Data Mining, обсуждаются их возможности.
Цель Познакомить слушателей с теоретическими аспектами технологии Data Mining, методами, возможностью их применения, дать практические навыки по использованию инструментальных средств Data Mining
Предварительные знания Желательны, но не обязательны знания по информатике, основам теории баз данных, знания по математике (в пределах начальных курсов ВУЗа), технологии обработки информации.
"За последние годы, когда, стремясь к повышению эффективности и прибыльности бизнеса, при создании БД все стали пользоваться средствами обработки цифровой информации, появился и побочный продукт этой активности -горы собранных данных: И вот все больше распространяется идея о том, что эти горы полны золота".
В прошлом процесс добычи золота в горной промышленности состоял из выбора участка земли и дальнейшего ее просеивания большое количество раз. Иногда искатель находил несколько ценных самородков или мог натолкнуться на золотоносную жилу, но в большинстве случаев он вообще ничего не находил и шел дальше к другому многообещающему месту или же вовсе бросал добывать золото, считая это занятие напрасной тратой времени.
Сегодня появились новые научные методы и специализированные инструменты, сделавшие горную промышленность намного более точной и производительной. Data Mining для данных развилась почти таким же способом. Старые методы, применявшиеся математиками и статистиками, отнимали много времени, чтобы в результате получить конструктивную и полезную информацию.
Сегодня на рынке представлено множество инструментов, включающих различные методы, которые делают Data Mining прибыльным делом, все более доступным для большинства компаний.
Термин Data Mining получил свое название из двух понятий: поиска ценной информации в большой базе данных (data) и добычи горной руды (mining). Оба процесса требуют или просеивания огромного количества сырого материала, или разумного исследования и поиска искомых ценностей.
Термин Data Mining часто переводится как добыча данных, извлечение информации, раскопка данных, интеллектуальный анализ данных, средства поиска закономерностей, извлечение знаний, анализ шаблонов, "извлечение зерен знаний из гор данных", раскопка знаний в базах данных, информационная проходка данных, "промывание" данных. Понятие "обнаружение знаний в базах данных" (Knowledge Discovery in Databases, KDD) можно считать синонимом Data Mining [1].
Большинство нейропакетов включают следующую последовательность действий:
• Создание сети (выбор пользователем параметров либо одобрение установленных по умолчанию).
• Обучение сети.
• Выдача пользователю решения.
Существует огромное разнообразие нейропакетов, возможность использования нейросетей включена также практически во все известные статистические пакеты.
Среди специализированных нейропакетов можно назвать такие: BrainMaker, NeuroOffice, NeuroPro, и др.
Критерии сравнения нейропакетов: простота применения, наглядность представляемой информации, возможность использовать различные структуры, скорость работы, наличие документации. Выбор определяется квалификацией и требованиями пользователя.
Пример решения задачи
Пакет Matlab
Классификация нейронных сетей
Подготовка данных для обучения
Выбор структуры нейронной сети
Карты Кохонена
Задачи, решаемые при помощи карт Кохонена
Обучение сети Кохонена
Карты входов
Выводы
Методы кластерного анализа
Иерархические методы кластерного анализа
Меры сходства
Иерархический кластерный анализ в SPSS
Определение количества кластеров
Алгоритм k-средних (k-means)
Описание алгоритма
Алгоритм PAM ( partitioning around Medoids)
Предварительное сокращение размерности
Факторный анализ
Итеративная кластеризация в SPSS
Сравнительный анализ иерархических и неиерархических методов кластеризации
Новые алгоритмы и некоторые модификации алгоритмов кластерного анализа
Алгоритм BIRCH (Balanced Iterative Reducing and Clustering using Hierarchies)
Алгоритм WaveCluster
Алгоритм CLARA (Clustering LARge Applications)
Введение в ассоциативные правила
Границы поддержки и достоверности ассоциативного правила
Методы поиска ассоциативных правил
Разновидности алгоритма Apriori
AprioriHybrid
Пример решения задачи поиска ассоциативных правил
Визуализатор "Правила"
Визуализация инструментов Data Mining
Визуализация Data Mining моделей
Методы визуализации
Представление данных в одном, двух и трех измерениях
Представление данных в 4 + измерениях
Параллельные координаты
Лица Чернова
Качество визуализации
Представление пространственных характеристик
Основные тенденции в области визуализации
Разработка сложных видов диаграмм.
Повышение уровня взаимодействия с визуализацией пользователя.
Увеличение размеров и сложности структур данных, представляемых визуализацией.
Выводы
Классификация СППР
OLAP-системы
OLAP-продукты
Интеграция OLAP и Data Mining
Хранилища данных
Преимущества использования хранилищ данных
Анализ предметной области
Постановка задачи Data Mining включает следующие шаги:
Подготовка данных
Определение и анализ требований к данным
Сбор данных
Предварительная обработка данных
Очистка данных
Анализ данных.
Выводы
Инструменты очистки данных
Инструменты ETL
Выводы по подготовке данных
Моделирование
Виды моделей
Математическая модель
Построение модели
Проверка и оценка моделей
Выбор модели
Применение модели
Погрешности в процессе Data Mining
Организационные Факторы
Человеческие факторы. Роли в Data Mining
CRISP-DM методология
Стандарт PMML
Стандарты, относящиеся к унификации интерфейсов
Поставщики Data Mining
Классификация инструментов Data Mining
Программное обеспечение Data Mining для поиска ассоциативных правил
Программное обеспечение для решения задач кластеризации и сегментации
Свободно распространяемые инструменты
Выводы
Обзор программного продукта
Графический интерфейс (GUI) для анализа данных
Инструментарий для углубленного интеллектуального анализа данных
Набор инструментов для подготовки, агрегации и исследования данных
Интегрированный комплекс разнообразных методов моделирования
Интегрированные средства сравнения моделей и пакеты результатов
Скоринг по модели и простота развертывания модели
Гибкость благодаря открытости и расширяемости
Основные характеристики пакета SAS Enterprise Miner 5.1
Управление временными метриками при помощи описательных данных
Подход SAS к созданию информационно-аналитических систем
Подход компании SAS к созданию информационно-аналитических систем стандартизован в рамках SAS Intelligent Warehousing solutions, рис. 23.2.