Размер вес каждой 2кг металл дюраль цена.         d9e5a92d

Виды средних и методы их расчета


Виды средних и методы их расчета

В практике статистической обработки материала возникают различные задачи, имеются особенности изучаемых явлений, и поэтому для их решения требуются различные средние. Математическая статистика выводит различные средние из формул степенной средней:

=

при z=l —средняя арифметическая;

при z=-l —средняя гармоническая;

при z = 2 — средняя квадратическая.

Однако вопрос о том, какой вид средней необходимо применить в отдельном случае, разрешается путем конкретного анализа изучаемой совокупности, определяется материальным содержанием изучаемого явления, а также исходя из принципа осмысленности результатов при суммировании или при взвешивании. Только тогда средняя применима правильно, когда получают величины, имеющие реальный экономический смысл.

Введем следующие понятия и обозначения: признак, по которому находится средняя, называется усредняемым признаком и обозначается х ; величина усредняемого признака у каждой единицы совокупности называется индивидуальным его значением, или вариантами, и обозначается как х1,х2,х3,...,хn, частота — это повторяемость индивидуальных значений признака, обозначается буквой

.

1. Предположим, что требуется вычислить средний стаж десяти работников торгового предприятия, причем каждый из них проработал здесь 6, 5, 4, 3, 3, 4, 5, 4, 5, 4, т.е. дан ряд одиночных значений признака, тогда х рассчитывается как

т.е. рассчитывается как средняя арифметическая (невзвешенная) делением количества сводного признака на число показаний:

Часто приходится рассчитывать среднее значение признака по ряду распределения, когда одно и то же значение признака встречается несколько раз. Объединив данные по величине признака (т.е. сгруппировав) и подсчитав число случаев повторения каждого из них, мы получим следующий вариационный ряд (табл. 17.3.1). Тогда средняя равна:

Таблица 17.3.1.

Ряд распределения работающих на торговом предприятии по стажу работы

Продолжительность стажа работы (варианты) х^

Число работников торгового предприятия (частоты)

Отработано человеко-лет Xi

Доля работников к общей численности работников,% (частости)

Wi=

/

xiwi

3

2

6

20

60

4

4

16

40

160

30

3

15



150

6

1

6

10

60

Итого

10

43

100

430


Следовательно, для исчисления взвешенной средней арифметической выполняются следующие последовательные операции: умножение каждого варианта на его частоту, суммирование полученных произведений, деление полученной суммы на сумму частот.

В ряде случаев роль частот при исчислении средней играют какие-либо другие величины. Например, при исчислении средней урожайности единственно правильным будет взвешивание по размеру площади посева, а не по числу участков. Частоты отдельных вариантов могут быть выражены не только абсолютными величинами, но и относительными величинами — частостями (w,). Заменив в этом примере абсолютные

значения частот соответствующими относительными величинами, получим тот же результат

Взвешенная средняя арифметическая учитывает различное значение отдельных вариантов в пределах совокупности. Поэтому она должна употребляться во всех тех случаях, когда варианты имеют различную численность. Употребление невзвешенной средней в этих случаях недопустимо, так как это неизбежно приводит к искажению статистических показателей. Сам по себе вопрос о весах, которые должны быть приняты при исчислении средней, как это видно из приведенных примеров, определяется исходной информацией.

Средняя арифметическая как бы распределяет поровну между отдельными объектами общую величину признака, в действительности варьирующую у каждого из них. Общий объем стажа, отработанного всеми рабочими, распределяется между ними поровну.

Средняя гармоническая. Учитывая, что статистические средние всегда выражают качественные свойства изучаемых общественных процессов и явлений, важно правильно выбрать форму средней, исходя из взаимосвязи явлений и их признаков. Средняя гармоническая — это величина, обратная средней арифметической. Когда статистическая информация не содержит частот по отдельным вариантам совокупности, а представлена как их произведение, применяется формула средней гармонической взвешенной.



Например, расчет средней цены выражается отношением:

При определении средней цены, используя невзвешенную среднюю арифметическую, получим среднюю, которая не отражает объема реализации, т.е. нереальна.

Как видно, средняя гармоническая является превращенной формой арифметической средней. Вместо гармонической всегда можно рассчитать среднюю арифметическую, но для этого сначала нужно определить веса отдельных значений признака.

В том случае, если объемы явлений, т. е. произведения, по каждому признаку равны, применяется средняя гармоническая (простая).

Средняя геометрическая — это величина, рассчитываемая как средняя из отношений или как средняя в рядах распределения, представленных в виде геометрической прогрессии:

=
Этой средней удобно пользоваться, когда уделяется внимание не абсолютным разностям, а отношениям двух чисел. Поэтому средняя геометрическая используется в расчетах среднегодовых темпов роста.

Основные свойства средних величин.

1. От уменьшения или увеличения частот каждого значения признака х в п раз величина средней не изменится. Если все частоты разделить или умножить на какое-либо число, то величина средней не изменится. Это свойство дает возможность частоты заменить удельными весами, называемыми частностями, а также, когда частоты всех вариантов одинаковы, вычислять средние по формуле простой средней арифметической. Указанное свойство важно тогда, когда абсолютные частоты не известны, а известны лишь удельные веса, т.е. относительные величины структуры совокупности.

2. Общий множитель индивидуальных значений признака может быть вынесен   за

знак средней:

3. Средняя суммы (разности) двух или нескольких величин равна сумме (разности)

их средних:

4. Если     где  — постоянная величина, то

5. Сумма отклонений значений признака    от средней арифметической   равна нулю:

Изложенные выше свойства средней позволяют во многих случаях упростить ее расчеты: можно из всех значений признака вычесть произвольную постоянную величину, разность сократить на общий множитель, а затем исчисленную среднюю умножить на общий множитель и прибавить произвольную постоянную величину.



Содержание раздела