Для характеристики структуры совокупности применяются особые показатели, которые можно назвать структурными средними. К таким показателям относятся мода и медиана.
Модой называется чаще всего встречающийся вариант, или то значение признака, которое соответствует максимальной точке теоретической кривой распределений.
Мода представляет собой наиболее часто встречающееся или типичное значение. Мода широко используется в коммерческой практике при изучении покупательского спроса (при определении размеров одежды и обуви, которые пользуются широким спросом), регистрации цен.
В дискретном ряду мода — это вариант с наибольшей частотой. Например, по приведенным ниже данным наибольшим спросом обуви пользуется размер 37 (табл. 17.3.2).
В интервальном вариационном ряду модой приближенно считают центральный вариант так называемого модального интервала, т.е. того интервала, который имеет наибольшую частоту (частость). В пределах интервала надо найти то значение признака, которое является модой.
Таблица 17.3.2 Определение моды по модальному интервалу
Размер обуви |
Число купленных пар |
34 |
2 |
35 |
10 |
36 |
20 |
37 |
88 Мода |
38 |
19 |
39 |
9 |
40 |
1 |
Решение вопроса состоит в том, чтобы в качестве моды выявить середину модального интервала. Такое решение будет правильным лишь в случае полной симметричности распределения либо тогда, когда интервалы, соседние с модальными, мало отличаются друг от друга по числу случаев. В противном случае середина модального интервала не может рассматриваться как мода.
Мода всегда бывает несколько неопределенной, так как она зависит от размера групп, от точного положения их границ.
Мода — это именно то число, которое в действительности встречается чаще всего (является величиной определенной), а в практике имеет самое широкое применение (например, наиболее часто встречающийся тип покупателя).
Медиана — это величина, которая делит численность упорядоченного вариационного ряда на две равные части: одна часть имеет значения варьирующего признака меньшие, чем средний вариант, а другая — большие. Понятие медианы легко уяснить из следующего примера. Для ранжированного ряда (т.е. построенного в порядке возрастания или убывания индивидуальных величин) с нечетным числом членов медианой является вариант, расположенный в центре ряда.
В интервальном вариационном ряду порядок нахождения медианы следующий:
располагаем индивидуальные значения признака по ранжиру; определяем для данного ранжированного ряда накопленные частоты; по данным о накопленных частотах находим медианный интервал.1
Рассмотрение абсолютных, относительных и средних величин требует от руководителя и временного, хронологического, отслеживания их изменений. При этом отражение изучаемого явления в ряду изменения фиксируемых показателей является существенным фактором в принятии ценовых и неценовых решений. Одновременно ряды динамики, которые описаны в статистике, выступают формой интеграционного соединения имеющихся в явлении элементов.