Вам 20 лет и вы подумываете о том, чтобы положить на счет 100 долл. сроком на 45 лет при ставке процента 8% годовых. Сколько денег будет на вашем счете когда вам будет 65 лет? Сколько из этой суммы составят простые проценты, а сколько — сложные? И если бы вам удалось найти банк, где годовая ставка процента составляет 9%, насколько больше денег у вас было бы в возрасте 65 лет?
Используя любой из рассмотренных ранее методов мы получаем:
FV = 100 долл.х1,0845 =3192 долл.
Поскольку начальная сумма составляет 100 долл., сумма начисленных процентов будет равна 3092 долл. Простые проценты получаются путем перемножения следующих величин — 45 х 0,08 х 100 долл., или 360 долл., тогда как сумма сложных процентов равна 2732 долл.
При условии, что годовая ставка процента равна 9%, мы получаем:
FV = 100 долл. х 1,0945 = 4833 долл.
Таким образом, кажущееся незначительным увеличение ставки процента на 1% приводит к получению дополнительной суммы, равной 1641 долл. (.4833 долл. ~ 3192 долл.) в возрасте 65 лет. Это более чем 50%-ное увеличение (1641 долл./ 3192 долл. = 0,514). Суть этого примера заключается в том, что незначительная разница в ставках процента может привести к большой разнице в будущей стоимости через большой промежуток времени.
Запомните, что правило 72 может помочь нам найти довольно приблизительный ответ на наши вопросы. При ставке банковского процента 8% ваши 100 долл. будут удваиваться каждые 9 лет. Таким образом, через 45 лет эта сумма удвоилась бы 5 раз, дав нам примерную будущую стоимость в размере 3200 долл.:
100 долл. х 2 х 2 х2 х 2 х 2 = 100 долл.х32 = 3200 долл.,
что не так уж и далеко от точного ответа — 3192 долл.
При ставке процента 9% ваши деньги будут удваиваться каждые 8 лет. За 45 лет они удвоятся примерно 5,5 раза (45/8 = 5,625). Следовательно, значение будущей стоимости будет на 50% больше, чем при ставке 8% годовых: 1,5 х 3200 долл.= долл-4800. И вновь эта сумма не далека от точного ответа — 4833 долл.