Одиночная длинная позиция по опциону и оптимальное f





Рассмотрим обычную покупку колл-опциона. Вместо того чтобы для нахождения оптимального f использовать полную историю сделок по опционам данной рыночной системы, мы рассмотрим все возможные изменения цены данного опциона за время его существования и взвесим каждый результат вероятностью его осуществления. Этот взвешенный по вероятностям результат является HPR, соответствующим цене покупки опциона. Мы рассмотрим весь спектр результатов (т.е. среднее геометрическое) для каждого значения f и таким образом найдем оптимальное значение. Почти во всех моделях ценообразования опционов вводными переменными, имеющими наибольшее влияние на теоретическую цену опциона, являются: (а) время, оставшееся до истечения срока, (б) цена исполнения, (в) цена базового инструмента и (г) волатильность. Некоторые модели могут иметь и другие вводные данные, но именно эти четыре переменные больше всего влияют на теоретическое значение. Из этих переменных две — время, оставшееся до истечения срока, и цена базового инструмента — переменные величины.
Волатильность тоже может изменяться, однако редко в той же степени, что цена базового инструмента или время до истечения срока. Цена исполнения не изменяется.
С помощью нашей модели можно найти теоретическую цену для всех значений цен базового инструмента и времени, оставшегося до истечения срока. Таким образом, HPR для опциона является функцией не только цены базового инструмента, но и функцией времени, оставшегося до даты истечения опциона:



где f = тестируемое значение f;
S = текущая цена опциона;
Z(T, U - Y) = теоретическая цена опциона, когда цена базового инструмента равна U - Y, а время, оставшееся до срока истечения, равно Т. Эту цену можно определить с помощью любой модели ценообразования, которую пользователь посчитает подходящей;
Р(Т, U) = 1-хвостая вероятность того, что цена базового инструмента равна U, когда время, оставшееся до истечения срока исполнения, равно Т. Это значение можно определить из любой формы распределения, которую пользователь посчитает подходящей;
Y = разность между арифметическим математическим ожиданием базового инструмента (согласно уравнению (5.10)) и текущей ценой.
С помощью этой формулы можно рассчитать HPR (взвешенное по вероятности результата) по сделке с опционом, при условии, что через время Т цена базового инструмента будет равна U. В данном уравнении переменная Т представляет собой долю года (выраженную десятичной дробью), оставшуюся до истечения срока опциона. Поэтому на дату истечения Т = 0. Если до истечения срока остается один год, то Т = 1. Переменная Z(T, U - Y) зависит от модели ценообразования, которую вы используете. Единственная переменная, которую вам надо рассчитать, — это Р(Т, U), т.е. вероятность того, что базовый инструмент будет равен U при заданном Т (т.е. времени, оставшемся до конца действия опциона). Если использовать модель Блэка-Шоулса или модель товарных опционов Блэка, то можно рассчитать Р(Т, U) следующим образом:
если U < или = О:



если U > Q:



где U = рассматриваемая цена;
Q = текущая цена базового инструмента;
V= годовая волатильность базового инструмента;
Е=доля года, выраженная десятичной дробью, прошедшая с тех пор, когда опцион был приобретен;
N() = функция нормального распределения (уравнение (3.21));
ln() = функция натурального логарифма.
В итоге мы получим взвешенное по вероятности HPR для каждого исхода.


- Начало - - Вперед -