Тест Колмогорова-Смирнова (К-С)





Хи-квадрат тест, без сомнения, является наиболее популярным из всех методов сравнения двух распределений. Так как многие ориентированные на рынок приложения, помимо рассматриваемых в этой главе, часто используют хи-квадрат тест, то он описан в Приложении А. Однако для наших целей наилучшим методом будет тест К-С. Этот очень эффективный тест применим к неячеистым распределениям, которые являются функцией одной независимой переменной (в нашем случае, прибыль за одну сделку).
Все функции распределения вероятности имеют минимальное значение 0 и максимальное значение 1. То, как они ведут себя между ними, и отличает их. Тест К-С измеряет очень простую переменную D, которая определяется как максимальное абсолютное значение разности между двумя функциями распределения вероятности. Тест К-С достаточно прост. N объектов (в нашем случае сделок) нормируются (вычитается среднее значение, и полученная разность делится на стандартное отклонение) и сортируются в порядке возрастания. Когда мы проходим эти отсортированные и нормированные сделки, накопленная вероятность рассматриваемого количества сделок делится на N. Когда мы берем первую сделку в отсортированной последовательности с наименьшим стандартным значением, функция распределения вероятности (cumulative density function, далее — ФРВ) равна 1/N. Для каждого стандартного значения, которое мы проходим, приближаясь к наибольшему стандартному значению, к числителю прибавляется единица. В конце последовательности наша ФРВ будет равна N/N, или 1. Для каждого стандартного значения мы можем рассчитать теоретическое распределение. Таким образом, мы можем сравнить фактическую функцию распределения вероятности с любой теоретической функцией распределения вероятности. Переменная D, или статистика К-С (К-С statistic), равна наибольшему расстоянию между значением нашей фактической функции распределения вероятности и значением теоретического распределения ФРВ при этом же стандартном значении. При сравнении фактической ФРВ для данного стандартного значения с теоретической ФРВ для этого же стандартного значения мы должны также сравнить теоретическую ФРВ предыдущего стандартного значения с фактической ФРВ текущего стандартного значения.
Для того чтобы прояснить эту ситуацию, посмотрим на рисунок 4-1. Отметьте. Что в точке А фактическая кривая находится выше теоретической. Поэтому мы сравниваем текущее значение фактической ФРВ с текущим теоретическим значением для нахождения наибольшей разности. Однако в точке В фактическая кривая находится ниже теоретической. Поэтому мы сравниваем предыдущее фактическое значение с текущим теоретическим значением. Идея состоит в том, что в результате мы выберем наибольшую разность.
Для каждого стандартного значения нам надо взять абсолютное значение разности между текущим значением фактической ФРВ и текущим значением теоретической ФРВ. Нам также надо взять абсолютное значение разности между предыдущим значением фактической ФРВ и текущим значением теоретической ФРВ. Повторив эту операцию для всех стандартных значений точек, где фактическая ФРВ делает скачок вверх на 1/N, и взяв наибольшую разность, мы определим переменную D.



Рисунок 4-1 Тест К-С

- Начало - - Вперед -