Страхование портфеля — четвертый метод переразмещения





Предположим, вы управляете фондом акций. Рисунок 8-2 демонстрирует типичную стратегию страхования портфеля, также известную как динамическое хеджирование. Пусть текущая стоимость портфеля равна 100 долларам за акцию. Стандартный портфель, он изображен прямой линией, в точности следует за рынком акций. Застрахованный портфель изображен пунктирной линией. Отметьте, что пунктирная линия проходит ниже прямой линии, когда портфель находится на уровне или выше своей первоначальной стоимости (100). Величина, на которую пунктирная линия ниже прямой линии, отражает стоимость страхования портфеля.
Когда стоимость портфеля уменьшается, страхование портфеля ограничивает падение на некотором уровне (в данном случае 100) за вычетом расходов на осуществление стратегии.
Страхование портфеля соответствует покупке пут-опциона по портфелю.
Допустим, фонд, которым вы управляете, состоит только из 1 акции стоимостью 100 долларов. Покупка пут-опциона на эту акцию с ценой исполнения 100 долларов при цене опциона 10 долларов соответствует пунктирной линии на рисунке 8-2. Худшее, что может произойти в данном случае с портфелем (1 акция и 1 пут-опцион), состоит в том, что по истечении опциона вы продадите акцию за 100 долларов, но потеряете 10 долларов (стоимость этого опциона). Таким образом, минимальная стоимость портфеля будет 90 долларов, независимо от того, насколько упадет базовая акция. При росте вы понесете некоторые убытки из-за того, что стоимость портфеля уменьшится на стоимость опциона.
Если сопоставить рисунок 8-2 с фундаментальным уравнением торговли и оценочным TWR из уравнения (1.19в), становится ясно, что в асимптотическом смысле застрахованный портфель лучше незастрахованного. Другими словами, если вы умны настолько, насколько глупа ваша худшая ошибка, то, застраховав портфель, вы ограничите последствия такой ошибки.
Обратите внимание, что длинная позиция по колл-опциону дает тот же результат, что и длинная позиция по базовому инструменту совместно с длинной позицией по пут-опциону с той же ценой исполнения и датой истечения, что и у колл-опциона. Когда мы говорим о том же результате, имеются в виду эквивалентные соотношения риск/выигрыш разных портфелей. Таким образом, пунктирная линия на рисунке 8-2 может также представлять длинную позицию по колл-опциону с ценой исполнения 100.
Посмотрим, как работает динамическое хеджирование при страховании портфеля. Допустим, вы, как управляющий фондом, приобретаете 100 акций по цене 100 долларов за акцию. Давайте смоделируем колл-опцион по этой акции.
Сначала определим минимальный ценовой уровень рассматриваемой акции.
Например, установим его на 100. Далее определим дату истечения этого гипотетического опциона. Пусть дата истечения будет последним днем текущего квартала.
Теперь рассчитаем дельту колл-опциона при цене исполнения 100 и выбранной дате истечения. Вы можете использовать уравнение (5.05) для поиска дельты фондового колл-опциона (можно использовать дельту для любой модели опционов, мы же будем использовать модель фондовых опционов Блэка-Шоулса). Допустим, дельта равна 0,5, т. е. в данный актив следует инвестировать 50% счета.
Таким образом, вам следует купить только 50 акций, а не 100 акций, которые вы бы купили, если бы не страховали портфель. Если цена акции будет расти, то же будет происходить с дельтой и количеством акций. Верхняя граница дельты равна единице, что соответствует инвестированию 100% средств. Если цена акции будет понижаться, то же будет происходить с дельтой и размером позиции по акциям.
Нижняя граница дельты равна 0 (при этом дельта пут-опциона равна -1), и в этой точке следует полностью закрыть позицию по акциям.



Рисунок 8-2 Страхование портфеля


- Начало - - Вперед -