d9e5a92d

Проблемы, не связанные с максимумом




* П. Самуэльсон опирается здесь на принцип фальсификации, выдвинутый K.P. Поппером, постулирующий потенциальную опровержимость любого утверждения, относимого к науке (Прим. ред.).
** Чтобы понять это представьте себе что вы максимизируете полезность вашего потребления (Qx, Qy,... ) по ценам (Рx, Рy,...) тратя положительный доход РxQx +...= PQ. Тогда для двух ситуаций (P1,Q1, P1Q1) и (Р2, Q2, P2Q2) возможность наблюдать одновременно что / P1Q1 1 и P2Q1 / P2Q2 1 противоречит ординалистской максимизации относительной полезности. При варианте

вместо отрицание этой возможности есть одна из форм Слабой аксиомы выявленного предпочтения.

Моя ранняя теория выявленного предпочтения сама по себе была совершенно адекватной для исследования проблем с двумя потребительскими товарами. Я продолжал считать, что если мы устраним аналогичные проблемы для выбора из более чем двух ситуаций,* то можно было бы устранить феномен "неинтегрируемости" поля безразличия.

* Используя обозначения предыдущей сноски я вывел, что неинтегрируемость могла бы быть устранена в силу следующей аксиомы: PiQi+1 для всех i=1,2,... , n-1
1" исключает " PnQn PnQ1 . При n = 2— это в сущности повторение Слабой аксиомы, при всех n 2 — это Сильная аксиома Хаутеккера.

В ситуации, подобной данной, когда докладчик обычно уж очень склонен к перечислению своих научных побед, особенно полезно почаще делать паузы, чтобы вспомнить поражения и неудачи Даже с помощью ведущих математиков мира я не смог проверить и доказать истинность вывода, приведенного в последней из сносок, и меня убедили изъять этот материал из опубликованного варианта "Выявленного предпочтения" (Samuelson, 1948) Тем большего почета заслуживает Хендрик Хаутеккер (Houthakker, 1950), который в первой же своей экономической работе сформулировал Сильную аксиому и доказал, что она исключает неинтегрируемость
В 1950 г. я сделал обзор дискуссии по интегрируемости, вернувшись к Парето, к началу века, и еще дальше — к классической диссертации Ирвинга Фишера (1892) (см Fisher, 1925), и даже еще дальше — к извлеченной из забвения работе малоизвестного Антонелли (Antonelli, 1886). В середине 30-х годов, когда я выступил со своей идеей, проблема интегрируемости находилась в настолько неопределенном состоянии, что работавшие в тесном сотрудничестве уже упомянутые сэр Джон Хикс и сэр Рой Аллен резко расходились во взглядах на этот предмет. Теперь, когда осознаны эмпирические проявления неинтегрируемости, большинство теоретиков склонно постулировать интегрируемость.

Как пояснить ее смысл? Мой добрый друг Николае Джорджеску-Реген, из классической работы которого я почерпнул так много тонких замечаний относительно проблемы интегрируемости (Georgesku-Roegen, 1936), стал бы доказывать, что невозможно выразить одними лишь словами столь сложные математические соотношения. Я же придерживаюсь противоположного взгляда, потому что математика — это язык и в принципе то, что может постигнуть один простофиля, может постигнуть и другой. Поэтому позвольте мне отослать вас рис.

2, благодаря которому я могу дать широкую интерпретацию условий интегрируемости для рассмотренной нами фирмы, максимизирующей прибыль и использующей 99 видов ресурсов.
Круто ниспадающие кривые на диаграмме представляют собой функции спроса на первый ресурс когда количество всех остальных ресурсов остается ограниченным, как в краткосрочном периоде у Маршалла. Жирные и более пологие кривые также представляют собой функции спроса на тот же ресурс v1 при ценах p1, но при условии, что цены всех остальных факторов заморожены. Если бы кто-то предложил мне объяснить, что означает интегрируемость, но не позволил при этом использовать язык частных производных, я бы мог проиллюстрировать это свойством пропорциональности площадей на рис.

2. Я могу сказать, что идея такого предложения применительно к экономике пришла мне в голову в связи с некоторыми любительскими изысканиями в термодинамике. Читая чудесно написанное введение в термодинамику Клерка Максвелла, я обнаружил (Samuelson, 1960), что его объяснение существования одной и той же шкалы абсолютной температуры в каждом теле могло бы быть верным только в том случае, если на p-v-диаграмме, на которую я ранее ссылался в связи с принципом Ле Шателье, два семейства кривых — круто ниспадающие, тонкие, и более полого ниспадающие, жирные, — образуют параллелограммы наподобие a, b с, d на рис 2., такие, что


[площадь а] / [площадь b] = [площадь с] / [площадь d]
Так же обстоит дело и с двумя различными экономическими кривыми. Именно вследствие условий интегрируемости Хотеллинга, которые связывают вместе 99 различных функций спроса на факторы, отмеченные выше площади обладают свойством пропорциональности. Заканчивая рассмотрение этого интересного результата, я хотел бы, с вашего позволения, упомянуть еще, что он остается в силе даже тогда, когда, как и в линейном программировании, соответствующие поверхности имеют углы и грани, на которых частные производные не определены однозначно.
Я бы не хотел заканчивать разговор о максимизации функций, не подчеркнув, что все это не следует воспринимать как всего лишь упражнения в логике и математике.* В экономической науке кипят дискуссии о том, стремятся ли корпорации максимизировать свою прибыль. Однако ни одна из спорящих сторон не задается вопросом о том, какое значение для объекта наблюдения имеет наличие или отсутствие той или иной функции, которую он максимизирует. А если выйти за относительно узкие рамки экономики, то я должен признаться, что писания социологов, таких, как Талкотт Парсонс (Parsons, 1949), кажутся мне уж очень пустыми, потому что они, по-видимому, никогда не задаются вопросом о том, какая разница между случаями, когда социальное действие рассматривается как часть системы, максимизирующей ценность, или когда оно вытекает из "функциональной" интерпретации наблюдаемых феноменов.

* В своем отклике на публикацию предыдущего варианта данной лекции Роберт Килтингуорт, аспирант Йельского университета, указал, что в физике часто не проводится особого различия между максимумом и минимумом или для данного случая между экстремумом какого-либо вида и стационарной точкой перегиба. Я вполне согласен с этим и часто имел случай указывать, что для физика типичным является обращение только к вариационному аспекту проблемы (см., например, мою статью о причинности и телеологии в экономике в: Lerner(ed.), 1965, р. 99-143, особенно р. 128). Так, я могу бросить мяч, чтобы попасть вам по голове двумя способами: прямой наводкой или бросив его так высоко, чтобы он упал на вас сверху (непрямой наводкой). Первая из траекторий минимизирует интеграл действия вторая— нет. Точно так же как природа не терпит пустоты только до уровня давления в 30 дюймов ртутного столба, она оказывается близорукой при нахождении минимума, минимизируя действие лишь на пути до первой сопряженной точки.

И в других ситуациях, как, например в случае прохождения света, физик на самом деле не верит, что процесс происходит телеологически: он размышляет о световых волнах, распространяющихся от каждой точки во всех направлениях в соответствии с принципом Гюйгенса, и он ожидает, что такие волны будут в различных точках усиливать или нейтрализовывать друг друга. То, что в геометрической оптике видится как луч света, это, попросту, места, где волны нейтрализуют друг друга в наименьшей степени. На языке экономики это скорее похоже на выдержанные в духе Дарвина рассуждения Армена Алчиана о том, что выживание наиболее приспособленных дает нам феномены, которые выглядят так, как будто порождены проблемой экстремума (Alchian, 1940). Как указал Киллингуорт, ссылаясь на работу А. д’Аспо (d’Aspo, 1939, ch.

18), отсюда вытекает следующее: на моем рис. 1 мы сгибаем зеркало вокруг точки В, сохраняя его наклон к ней, но придавая ему кривизну большую чем кривизна эллипса фокусами которого являются А и С. Тогда фактическая траектория по которой перемещается свет (как это видно от А к В и затем к О) по длине будет наибольшей, а не наименьшей! И в других случаях можно представить фактическую траекторию не минимальной и не максимальной, а попосту стационарной точкой перегиба (своего рода седловой точкой). Если приложить некоторое усилие то как и выше, можно свести ситуацию к случаю сопряженной точки. Ход рассуждений при этом следующий.

Разделите одновременно на два, на четыре и т.д. расстояния от В до А и С до тех пор, пока в конце концов не сможете сказать, что конечная траектория, по которой перемещается свет действительно представляет собой минимум. Или в более общем виде, в геометрической оптике для достаточно близких друг к другу точек траектории, по которой перемещается свет, соответствующий интеграл Герона-Ферма-Мопертюи действительно принимает минимальное значение. Следует подчеркнуть что в экономической теории важна именно истинная минимизация так как предполагается что экономические субъекты с самого начала руководствуются некими цепями.
Проблемы, не связанные с максимумом
Мне не хочется выглядеть империалистом и выдвигать претензии на универсальную применимость принципа максимума в теоретической экономике. Есть множество областей, где он просто не применяется. Возьмем для примера мою раннюю работу, посвященную взаимодействию акселератора и мультипликатора (Samuelson, 1939).

Это важная тема для макроэкономического анализа. Действительно, как я уже отмечал в другом месте, эта статья чрезвычайно подняла мою репутацию. Конечно, тема была фундаментальной, а математический анализ условий устойчивости давал возможность получить изящное решение на уровне, доступном для понимания как толкового начинающего, так и виртуоза математической экономики.

Однако первоначальная спецификация модели принадлежит моему гарвардскому учителю Элвину Хансену, а работы сэра Роя Харрода (Harrod, 1936) и Эрика Лундберга (Lundberg, 1937) ясно указали путь к построению этой модели.

Интересные записи



Содержание раздела