Следующее поколение биологов ближе подошло к цели в поисках этого богом данного организма, использовав более примитивного моллюска. В 40-х годах Анжелика Арванитаки, а в 50-х и 60-х Ладислав Таук начали в Париже исследования на морском брюхоногом моллюске Apfysia гермафродитном организме, который обитает на прибрежных участках дна и кормится водорослями. Аплизия может достигать 30 см в длину и весить до двух килограммов; из нескольких видов этого рода наиболее крупным и популярным у экспериментаторов (я не говорю наилучшим) является калифорнийский (Apfysia californica).
Центральная нервная система этих животных состоит из нескольких ганглиев, содержащих не более 20 000 нейронов. Четыре ганглия кольцом охватывают кишечник и связаны мощными нервными трактами с крупным абдоминальным ганглием. Для экспериментатора важное преимущество аплизии по сравнению с дрозофилой, у которой столько же нейронов, или осьминогом, у которого их гораздо больше, очень большие размеры некоторых из этих клеток (примерно до 1 мм
Только в начале восьмидесятых годов были получены убедительные данные в пользу условнорефлекторной природы втягивания жабры и сифона у аплизий. В этих экспериментах безусловным раздражителем служило резкое воздействие на хвостовую область тела, которое сразу же приводило к энергичной реакции жабры и сифона, а условным стимулом было слабое тактильное раздражение сифона, которое обычно вызывает лишь вялое его втягивание. После повторных сочетаний двух стимулов первый из них вызывал такую же сильную реакцию, как и второй1 [8].
Решение проблемы у позвоночных
Конструкторская проблема обособления мозга от пищеварительной системы была решена на уровне позвоночных живо-
1 В качестве альтернативного объекта для экспериментов, составившего конкуренцию аплизий, нейрофизиолог Дэн Ал кон из Вудс-Хоула предложил моллюска Hermissenda. Последний, как и аплизия, имеет просто устроенный мозг, состоящий из небольшого числа относительно крупных, хорошо различимых нейронов. Животное реагирует на вращение и встряхивание таким сокращением мускульной ноги (обычно служащей для прикрепления к субстрату), которое будет в максимальной степени фиксировать его положение. Напротив, реакция на слабый источник света состоит в перемещении к нему, что требует вытягивания ноги.
Совмещая воздействие светом и вращение, Алкон установил, что в конце концов Hermissenda начинает реагировать сокращением ноги на одно лишь световое раздражение так же, как и на вращение [9]. И этот тип поведения отвечает всем критериям ассоциативного научения, принятым в психологии млекопитающих. В последнем десятилетии возникло некоторое соперничество между обеими исследовательскими группами, которое вылилось в публичную дискуссию о достоинствах двух моллюсков и приоритете научных данных, полученных двумя коллективами. Это соперничество послужило даже темой научно-популярной книги [10].
Более подробно об этом будет рассказано в последующих главах.
тных, у которых был создан внутренний скелет на основе позвоночника. В результате черепная полость могла вмещать теперь увеличенный головной ганглий (головной мозг), а нервы, идущие от него к остальным частям тела, оказались внутри позвоночного канала, образовав спинной мозг. Ганглии, не включенные в эту центральную нервную систему, потеряли прежнее значение, а степень их автономии уменьшилась. Но, несмотря на столь радикальные структурные изменения, принципы клеточной организации нервной системы с ее нейронами, синапсами и нейронными ансамблями у позвоночных остались теми же, что и у беспозвоночных.
Это в основном относится и к биохимии нервной системы. Такая ситуация несколько сродни тем многообразным изменениям транспортных средств с двигателем внутреннего сгорания, которые они претерпели со времени изобретения этого двигателя в конце прошлого века. Автомобили, мотоциклы и самолеты могут вбирать в себя самые удивительные конструкторские решения, оборудоваться улучшенными моторами, ежегодно менять эффективность, стиль и отделку, но использовать прежний принцип работы двигателя с его цилиндрами и клапанами, топливо на основе нефтепродуктов и колеса для движения по грунту.
С появлением позвоночных изменились не элементы, из которых построена нервная система, и не основные пути получения и. преобразования энергии, а принцип ее организации в целом; система обладает полностью сформировавшимися механизмами научения и памяти, которые свойственны всем млекопитающим, в том числе (в наиболее развитых формах) приматам, а среди них, конечно, и человеку. Вопрос о том, сохраняется ли (несмотря на радикальные конструктивные изменения) сходство клеточных механизмов научения и памяти у беспозвоночных и позвоночных, или же они в корне различны, требует дальнейшего изучения. Его обсуждению будет посвящена часть следующей главы.
Задача же данного раздела, состоявшая в том, чтобы проследить эволюцию явлений, сходных с памятью у животных (исключая человека), выполнена.
Зачем нужна биохимия?
Когда в 1929 году физиолог-любитель из Швейцарии Ганс Бергер описал, как с помощью набора электродов, закрепленных на голове человека, ему удалось зарегистрировать непрерывные вспышки электрической активности в мозгу, никто сначала не принял это сообщение всерьез. Обсуждая аналогии памяти, я уже упомянул феномен "животного электричества" и его связь с нервной активностью; он был известен очень давно, по крайней мере с того времени, как в 1790-х годах Гальвани продемонстрировал в Болонье, как электрические разряды вызывают подергивание лапок лягушки. В 1875 году Кейтон, профессор физиологии из Ливерпуля, показал, что электроды, приложенные к обнаженному мозгу кроликов, регистрируют электрические импульсы.
Однако Бергер выявлял импульсы, проходящие через кости черепа, поэтому их вполне можно было бы счесть артефактом, если бы в середине тридцатых годов нашего века кембриджские нейрофизиологи Эдриан и Мэттьюз не подтвердили эти наблюдения в систематических исследованиях. Непрерывная электрическая активность мозга носила характер своеобразных волн, различавшихся во время сна и бодрствования, в периоды умственного напряжения и покоя.
Одно время казалось, что тайны души заключаются в изменчивых линиях электроэнцефалограммы (ЭЭГ) [1]. Нельзя ли найти в них и ключ к механизмам памяти? Быть может, воспоминания хранятся в форме непрерывно реверберирующих цепей, электрических контуров, создающихся в результате замыкания и размыкания различных синаптических соединений? Увы, недолгая популярность этой идеи не выдержала испытания: как показали исследования, долговременная память сохраняется даже после дезорганизации всей электрической активности мозга (например, при электрошоке или припадке
эпилепсии) или почти полного ее прекращения, как при коме или сотрясении мозга. Поэтому, не исключая зависимости самых кратковременных фаз памяти от непрерывной электрической активности мозга (о чем в свое время будет сказано подробнее), следует подчеркнуть, что любой сколько-нибудь длительный след памяти должен быть воплощен в каком-то более стойком изменении.
Какую, однако, форму могут иметь такие следы и на каких уровнях их надо искать? Согласно концепции Хебба, изложенной в главе 6, формирование следов памяти связано с ростом или перестройкой синапсов процессом, приводящим к построению новой системы межнейронных связей, которые могут в дальнейшем сохраняться.