d9e5a92d

Электронная микрофотография


Идеи, родившиеся без его участия, отвергались, хотя его собственный образ мышления не отличался ни гибкостью, ни богатством воображения, поскольку активную исследовательскую работу он давно уже променял на организационную и консультативную. Имя Чейна всегда фигурировало в числе соавторов всех работ, выходивших из отдела, каким бы скромным ни бьш его личный вклад. Этим он резко отличался от Кребса, который был исключительно щепетилен и подписывался только под теми работами, в которых принимал непосредственное участие1.
 
Микробиолог по образованию, Чейн под влиянием совей жены биохимика Энн Беловой стал интересоваться метаболизмом мозга и дал мне тему по использованию энергии в этом органе. Но к тому времени я уже лучше знал, какие хочу вести исследования. Если я не найду способа применить мои биохимические знания для изучения функций мозга, я с таким же успехом могу работать на печени или пальцах ног. Определить будущее мне в это время помогла одна статья: я наткнулся на обширный обзор Холгера Хидена из Швеции, в котором он описывал и свои исследования.

Это бьша работа такой изысканной точности, что у меня захватило дух.
Мозг состоит из огромного количества нервных клеток (нейронов), число которых у человека, возможно, достигает
1 Формированию авторитарного стиля особенно способствовало то, что по приезде в Англию Чейн получил для организации исследовательского отдела средства от Совета по медицинским исследованиям главной государственной организации, финансирующей медицину и биологию в Великобритании. Научные сотрудники, принятые в такой отдел, в отличие от университетских преподавателей работают главным образом по краткосрочным контрактам, разрабатывая темы, предложенные директором (так обстоит дело и сегодня, хотя число подобных отделов сократилось в результате изменения научной политики и сокращения финансирования). По этой причине даже ведущие сотрудники попадают почти в крепостную зависимость от директора.

Если он (местоимение мужского рода, я полагаю, очень уместно в данном случае) переходит в другой институт, что случается нередко, то весь его штат следует за ним или рискует остаться без работы. Поскольку Чейн^набирал сотрудников в новый отдел, еще оставаясь в Италии, нам пришлось переехать в Рим до завершения организации лаборатории. Проведенный там год был не очень плодотворным в отношении научных публикаций, зато у меня было время написать мою первую книгу: небольшое биохимическое эссе под названием "Химия жизни", которое читают и сейчас, после выхода нескольких изданий.
 


3.3. Электронная микрофотография мозговой ткани. На таких препаратах динамичная структура мозга навсегда "заморожена" и предстает в виде запутанной массы нейронов, глии, дендритов, аксонов и синапсов.
двадцати миллиардов ( 3.13.3). Однако даже это невероятное множество кажется не столь большим, когда узнаешь, что каждый нейрон погружен в массу гораздо более мелких клеток, называемых глиальными, роль которых была и остается еще менее изученной, чем роль нейронов; очевидно, они выполняют опорную, питательную и защитную функции. На каждый нейрон приходится, вероятно, по десятку клеток глии. Таким образом, биохимический анализ проб мозговой ткани означает изучение смеси нейронов и глии.

Если функциональная активность мозга действительно связана с нейронами, то нужно изучать их свойства отдельно от свойств глии. Но как? В шведских лабораториях существует многолетняя традиция разработки микрометодов для анализа малых количеств материала.

Хиден развил эту традицию до крайнего предела. Он выбрал определешгую область мозга с нервными клетками относительно больших размеров что-нибудь около 30 миллионных долей метра (30 мкм) в диаметре. Кусочек ткани с такими клетками он помещал под секционный микроскоп, предварительно аккуратно обработав их синим красителем, чтобы сделать видимыми, и с помощью тонкой проволочки с заостренным как нож краем отделял каждую крохотную нервную клетку от окружающей массы глии.

Таким образом он получил несколько десятков нейронов и сравнил их с соответствующим количеством глии. Он ухитрялся даже прокалывать клетку, словно миниатюрный воздушный шарик, приподнимать ее наружную оболочку (клеточную мембрану) и вытряхивать все


содержимое, получая пустую оболочку для дальнейшего анализа. На протяжении 50-х годов Хиден с помощью знаменитых шведских микрометодов скрупулезно измерял утилизацию кислорода и определял ДНК, РНК и белки в таких изолированных клетках, сравнивая биохимические свойства нейронов и глии. Их различие наверняка пролило бы некоторый свет на специализацию нервных клеток для осуществления их уникальных функций.
Но Хиден пошел дальше, словно всего этого было еще мало. Он стал применять свои новые методы для изучения функциональных биохимических изменений в нервных клетках. Он спрашивал себя: не будут ли свойства клеток меняться под влиянием прошлого опыта крыс и кроликов, из мозга которых мы их выделим? Хиден начал изучать крупные клетки из глубинного участка, имеющего отношение к чувству равновесия.

Он помещал кроликов в устройство, напоминающее детскую карусель, а крыс обучал осторожно взбираться по наклонно натянутой проволоке, к верхнему концу которой прикреплялась приманка. Оказалось, что изменение поведения у животных, несомненно, сопровождается изменениями свойств РНК и белка в нейронах, но не в глиальных клетках. Хиден разработал теорию, согласно которой следы памяти хранятся в мозгу в виде структурно ^измененных молекул.
В наши дни о Хидене, как и о многих других первопроходцах, почти не вспоминают. Его микрометоды были совершенно уникальны, и другие лаборатории не могли или не желали воспроизвести их. К концу семидесятых годов сложилось мнение, что данные Хидена сомнительны или статистически недостоверны; на смену пришли новые методы и модели. Но шестидесятые годы были апофеозом Хидена.

Он не переставал выступать на конференциях и семинарах, где часто приходилось слышать его низкий голос и медленную шведско-английскую речь, а его доклады иллюстрировались изумительными фотографиями клеток, выделенных с помощью микрометодов. Верю ли я теперь в эти работы? В шестидесятых начале семидесятых годов я несколько раз приезжал в его лабораторию и заражался общим скептицизмом относительно специфичности его результатов. Но я сам наблюдал, как он с поразительным изяществом вырезал отдельные клетки, и у меня не оставалось
сомнений, что по крайней мере методика его была вполне адекватной [3].
В конце XVII века голландский торговец Антони ван Левенгук изобрел микроскоп нового типа. Проводя с его помощью наблюдения, он впервые в истории человечества описал невидимый до того мир микроорганизмов (он назвал их анималькулами), которые тысячами кишели в каждой капле прудовой воды. Он зарисовывал их с поразительной точностью. Посмотрите в микроскоп Левенгука сегодня, и если вам вообще что-то удастся увидеть, считайте, что вам повезло настолько малы и несовершенны были линзы по современным стандартам. Многие его современники были настроены скептически: они не видели того, что видел он и, возможно, были по-своему правы.

Но прав был и Левенгук. Анималькулы были реальны, и открытие их перевернуло наши представления о мире живого. Может быть, Хиден это сегодняшний Левенгук?

Не следует, однако, забывать, что Левенгук рассмотрел также человеческую сперму и описал отдельный сперматозоид как подобие совершенного по форме крошечного гомункулуса, укрепив тем самым давний преформистский предрассудок относительно нашего размножения, который был изжит лишь столетие спустя.
Каким бы ни был окончательный приговор по поводу экспериментов Хидена, в свое время они гальванизировали работу нейрохимиков. Стало ясно, что биохимические методы действительно можно использовать для изучения функций мозга, включая даже память. И я сделал свой выбор.
Но как приступить к исследованиям? Микрометоды Хидена были мне недоступны, а Чейн, как всегда, скептически отнесся к моим намерениям. Если ключевым требованием было отделение нейронов от глии, то, вероятно, я мог бы поискать другой способ достижения той же цели. К концу пятидесятых годов у биохимиков накопился уже целый арсенал общих методов изучения клетки.

Один из них центрифугирование использовался для разделения клеток на различные компоненты. Работа лабораторной центрифуги основана на том же принципе, что и отжимание белья в бытовой стиральной машине. При очень быстром вращении содержащаяся в материи вода оттесняется к стенкам камеры и вытекает из нее.

В биологической центрифуге пробирки с суспензией частиц вращаются с очень высокой скоростью, до 70 000 оборотов в минуту. По мере вращения суспендированные частицы под действием центробежной силы


3.4. Синапс. Слева электронно-микроскопическая картина синапса после удаления окружающего фона. Справа рисунок, сделанный художником.

Приходящие по аксону нервные импульсы вызывают освобождение молекул нейромедиатора из мелких пузырьков пресинаптического окончания. Медиатор диффундирует через синаптическую щель к шипику на дендрите, где его ожидает молекула рецептора.



Содержание раздела