Задача 8.1. Выбор трассы новой автобусной линии в городе. Построен за городом новый жилой микрорайон, который нужно связать с центром города. Имеем исходную стратегическую игру (,A,L). Статистик пришел к выводу, что линию можно провести до пункта А1, или А2, или А3. Решение А = {а1, а2, а3}, где a1, означает проведение трассы до А1, а2 - до А2, а3 - до А3, причем А1 и А3 находятся в разных концах города. Множеством состояний природы являются 1, 2, 3 - состояния, когда большинство жителей микрорайона работает соответственно в окрестности пункта А1, пункта А2 и пункта А3, находящегося в самом центре города.
Если принятое решение провести трассу не будет удовлетворять нужды жителей микрорайона, то транспортное предприятие понесет потери. Потери будут максимальными при ошибочном решении проложить трассу к пункту А3 вместо А1 или наоборот.
Решение. Функция L(, а) потерь характеризуется матрицей (табл. 8.1).
Таблица 8.1
Преобразуем стратегическую игру (, A, L) в статистическую (, D, R) при учете информации о действительном состоянии природы. Для этого проводится выборочный опрос жителей микрорайона. Результаты этого опроса образуют вектор
где x1, х2, х3, - доля от общего числа опрошенных (не менее 50 %), которые предлагают строительство трассы до пунктов А1, А2, A3 соответственно;
x4 любое из трех направлений не получило решающего количества голосов.
Действительные данные результата опроса показали следующие вероятности рекомендаций жителей (табл. 8.2) в зависимости от состояний природы .
Таблица 8.2
В результате опроса получаем условные вероятности P(x1|1) = P(x2|2) = P(x3|3) = 0,7. Пусть d(x) = а - нерандомизированная функция решения, преобразующая множество Х результатов эксперимента в множество решений. Множество D нерандомизированных решений при наличии четырех результатов эксперимента и трех возможных решений будет иметь 34 = 81 различную функцию решений статистика в статистической игре с природой (, D, R}. Из них мы ограничимся шестью допустимыми функциями: d1, d2, ... , d6 (табл. 8.3).
Таблица 8.3
Какие же решения не вошли в допустимые? Недопустимые функции решения это все функции dD, которые не ставят в соответствие хотя бы одному из результатов x1, x2, x3 решение а1, а2, a3 потому, что для этих функции значение риска R(, d) будет всюду большим по сравнению с другими функциями решений. Результат х4 при этом во внимание не принимается, поскольку он не отражает конструктивного предложения.
Учтем полученные условные вероятности и, зная значения функций потерь, вычислим математические ожидания функций потерь, т. е. получим функции риска для допустимых функций решений:
Из табл. 8.3 видно, что вне зависимости от х1, х2 х3, х4 решение d4 будет соответствовать решению а1, d5a2, d6a3.
Объединим все полученные решения в табл. 8.4 и выпишем минимальные значения функции риска по строке и максимальные значения - по столбцу.
Таблица 8.4
Таким образом, как показывает табл. 8.4, среди нерандомизированных функций решений нет минимаксной функции: v1=0v2=1,75. Следовательно, минимаксную функцию решения надо искать во множестве D* рандомизированных функций .
В данной статистической игре (, D, R) в качестве оптимальной нужно принять минимаксную функцию решения.
Для того чтобы найти рандомизированную минимаксную функцию решения 0, следует обратиться к линейному программированию (см. приложение).
Пусть - распределение вероятностей на множестве нерандомизированных функций решения d. Обозначим это распределение 1 = P(d1), 2 = P(d2), ... , 6 = P(d6). Теперь обозначим через цену расширенной статистической игры (, D*, R) при рандомизации функций решений и запишем в терминах линейного программирования задачу статистика, который решает ее в интересах транспортного предприятия.
Для этого воспользуемся данными табл. 8.4:
Преобразуем переменные, разделив на цену игры 0, и введем дополнительные переменные q7, q8, q9. В результате перейдем от неравенств к равенствам:
при qj 0, j =
Решим эту задачу линейного программирования симплексным методом (техника решения известна и здесь не излагается) и получим базисное оптимальное решение:
q1 = q3 = 2/7; q2 = q4 = q5 = qб = 0.
Значит, Zmax = q1 + q3 = 2/7 +2/7 = 4/7.
Отсюда = l/Zmax = 2/7 = 1,75.
Перейдем к исходным переменным i = qi ; i =
Итак, получена минимаксная рандомизированная функция решения 0 с распределением вероятностей: P(d1) = 1/2; P(d3) = 1/2. Как ее охарактеризовать? Это смешанная стратегия 0 с одинаковыми вероятностями чистых функций решения d1 и d3. Они различаются только результатом статистического эксперимента.
Вывод. В задаче выбора транспортным предприятием наилучшей трассы маршрута новой автобусной линии получена оптимальная минимаксная функция решения:
если по эксперименту с анкетами получен результат х1, или x2, или x3, то следует принять решение а1 или а2, или a3 соответственно;
если получен результат х4, то нужно использовать механизм случайного выбора между решениями а1 (трассу вести до А1) и a3 (трассу вести до А3) с одинаковыми вероятностями, равными 0,5. Следует сделать одно важное замечание: в данном случае мы из расчетов получили одинаковые вероятности. (Это решение не имеет ничего общего с принципом равновероятности, который иногда необоснованно применяется при отсутствии информации о возможных вероятностях событии.)
8.2. ПРИНЯТИЕ РЕШЕНИЙ В СЕЛЬСКОМ ХОЗЯЙСТВЕЗадача 8.2. Планирование участков земли под картофель, проводимое методом Байеса. При наличии больших массивов земли в хозяйстве можно сознательно выбирать наиболее выгодные для урожая участки с учетом их влажности.
В период вегетации требуется определенное количество влаги. Если влажность будет излишняя, то часть посадочного материала начнет гнить, урожай будет плохим.
Картофель в средней полосе сажают обычно в апреле. В это время трудно предвидеть, каким будет лето - сухим или влажным. Фактически создается ситуация, которую можно считать игрой с природой. Мы должны принять решение, на каких участках сажать картофель: на сухих или на тех, которые сами по себе являются влажными.
Введем условные обозначения:
= {1, 2} - множество состояний природы;
1 - осадки выше нормы;
2 сухое лето (осадки не выше нормы);
А = {а1, a2} - множество решений статистика;
а1 - посадку производить на участках с большой влажностью почвы;
a2 - посадку производить на сухих участках, так как ожидается влажное лето.
Известны средние урожаи в зависимости от принятого решения и состояния природы. При этом наименьшие урожаи бывают, если осадки выше нормы (1), и принимается решение а1 -сажать картофель на влажных участках.
Наибольшие урожаи в среднем бывают при решении а2 -сажать картофель на сухих участках и при состояниях природы 1 - влажное лето.
Прибыль на 1 га в тыс. руб. в среднем известна по многолетним результатам (табл. 8.5).
Таблица 8.5
Итак, мы получили значения прибыли, а нас интересуют потери.
Решение. Представим функцию потерь L(, a) в виде разности между наибольшей прибылью и прибылью, которая может быть получена во всех остальных случаях (табл. 8.6).
Статистик должен получить дополнительную информацию о состояниях природы при наблюдениях погоды в апреле, когда проводится посадка.
Таблица 8.6
Пусть X = {x1, x2} - множество наблюдений, где х1 и х2 - наблюдается большое и малое количество осадков соответственно.
В зависимости от состояния природы j и наблюдения погоды хi получим следующие значения условных распределений:
По двум решениям статистика а1 и а2 и результатам наблюдения получаем четыре нерандомизированные функции решения d D (табл. 8.7).
Таблица 8.7
В статистической игре (, D, R), которая посвящена выбору участков земли для посадки картофеля, определим функции риска R(, d):
Полученные результаты функций риска R(, d) представим в табл. 8.8, откуда видно, что функция решения d2 доминирует над функцией d3. Следовательно, d2 недопустима. Она не относится к подмножеству допустимых функций решения. Мы в этом убедимся при расчете байесовских рисков.
Таблица 8.8
Будем считать, что в рассматриваемом районе априорное распределение состояний природы приводит к одинаковым шансам для сухого и влажного лета при исследовании состояний природы. Значит, Р(1) = 0,5; P(2) = 0,5.
Вычислим байесовский риск r(, d):
Минимальный байесовский риск наблюдается для функции d3, что не противоречит выводу, сделанному из табл. 8.8.
Вывод. Нерандомизированная функция решения d3, которая включает решение для d(x1) = а2 и d(x2) = а1, является байесовской функцией решения. Это оптимальная стратегия статистика: в рассматриваемых условиях, если весной много осадков (x1), принимается решение а2 о том, что картофель нужно сажать на сухих участках земли А2. Если весной мало осадков (x2), принимается решение а1 о посадке картофеля на участках А1, где влажность почвы большая.
Задача 8.3. Планирование участков земли под посевы картофеля методом линейного программирования. В задаче 8.2 мы получили оптимальное байесовское решение d3. Теперь попробуем получить минимаксную, более осторожную стратегию.
Минимаксную функцию решения следует искать как смешанную стратегию среди рандомизированных функций решения, потому что матрица значений функций риска R(, d) для нерандомизированных функций решения d D не имеет седловой точки.
Применяя метод линейного программирования и учитывая, что при оптимальном решении ограничения записываются как равенства, получаем из табл. 8.8 при ненулевых значениях 1 и 3 систему уравнений, которая включает цену игры v:
В результате решения этой системы уравнений получим:
Вывод. Минимаксная стратегия, еще более осторожная, чем оптимальная байесовская, для сельскохозяйственного предприятия заключается в использовании стратегий d1 и d3 с вероятностью соответственно 0,04 и 0,96.
Как это применять на практике?
Если весной наблюдается х1 (большое количество осадков), то осуществляется случайный выбор с вероятностями 0,04 и 0,96 одного из решений: а1 или а2. При наблюдении х2 (малое количество осадков весной) принимается решение a1 о посадке картофеля на влажных участках А1.
8.3. СТАТИСТИЧЕСКИЙ КОНТРОЛЬ ПАРТИИ ГОТОВЫХ ИЗДЕЛИЙ И ВЕРОЯТНОСТЬ ПЕРЕБОЕВ ПРОИЗВОДСТВАНа основе статистических планов приемки продукции всегда должно быть известно, сколько изделий следует случайным образом отобрать для статистического контроля и при каких условиях принимается решение о браковке или приемке партии.
Планов контроля имеется большое множество, однако благодаря своей простоте часто применяется одноступенчатый статистический план премки k|n, где п - объем выборки; k - приемочное число. Если из проверенных изделий число дефектных Z не будет превышать k, партия принимается. Значит, k - допустимое число дефектных в выборке из п изделий.
Представитель торгового предприятия при Z k считает партию хорошей и принимает ее на основе анализа выборки. Затем производитель покрывает стоимость каждого обнаруженного в переданной партии бракованного изделия путем замены, бесплатного ремонта или другим путем, означенным в договоре.
Если Z k, то партия не принимается торговым предприятием, а производитель осуществляет сплошную проверку партии и выявляет дефектные изделия.
Задача 8.4. Выбрать оптимальное критическое число k. Значение k может быть определено при помощи статистической игры.
Введем обозначения:
W (W), доля дефектных изделий, - состояние природы ;
N - объем партии изделии;
= [0,1] - интервал от 0 до 1 с включением границ этого интервала;
А = {а1, a2}- множество решении статистика, где а1, а2 - решения о приемке и о браковке партии со сплошным ее контролем соответственно;
С1 - затраты на проверку одного изделия;
С2- сумма, уплачиваемая производителем за каждое обнаруженное дефектное изделие после приемки партии.
Функция потерь
где С1п - стоимость контроля выборочной совокупности изделии в процессе контроля;
C2(Nn)W - сумма, выплачиваемая производителем за изделия, когда они окажутся дефектными после приемки;
С1 n + С2(Nп) - затраты на сплошной контроль, если партия не была принята.
Итак, стратегическая игра будет иметь вид (, A, L). Для определенности будем считать:
торговая фирма оплачивает только исправные изделия, а дефектные заменяются исправными;
при большой партии распределение вероятностей случайной переменной - числа дефектных изделий Z - подчиняется биномиальному закону. Функция вероятности зависит от действительной доли бракованных изделий в принимаемой партии W:
контролер наблюдает число Z в выборке объема п;
d(Z) = а - статистическая нерандомизированная функция решения контролера. Контролер может принять одно из двух значений: a1 (принять) или a2 (не принять партию).
Однако нам необходимо осуществить оптимальный выбор критического числа k, поэтому перейдем к статистической игре. В этой игре используем информацию о числе Z забракованных изделий в выборке объемом п; распределение Z зависит от состояния природы W - доли дефектных изделий.
Решение. Для состояния природы W и статистической нерандомизированной функции решения d(Z), определяющей критическое число k при контроле партии готовых изделий, можно в статистической игре (, D, R) найти функцию платежей или функцию риска R(W, d):
Это выражение можно раскрыть, используя биномиальное распределение.
Далее в качестве целевой функции d(Z), определяющей оптимальное критическое число k выберем байесовскую нерандомизированную функцию. Пусть процесс производства является отлаженным, тогда доля дефектных изделий в партии W будет иметь бета-распределение, заданное на интервале [0,1]. В зависимости от принятых параметров р и q можно определить априорное распределение доли дефектных изделий W в принимаемых партиях.
Таким образом, априорным распределением состояний природы W принимается бета-распределение с функцией плотности
Известно, что существует связь между бета- и гамма-функциями:
Байесовский риск при этом распределении будет
Этот байесовский риск следует минимизировать относительно k. При известных размерах партии N, выборки п, затрат C1 и С2, параметров априорного бета-распределения р и q байесовский риск будет только функцией k:
r(, d) = f(k).
Теперь нужно найти такое натуральное k, чтобы удовлетворялись неравенства
f(k) f(k+1) и f(k) f(k1)
Рассмотрим неравенство f(k) f(k+1), из которого следует, что f(k+1) f(k) 0.
Используя связи между бета- и гамма-распределениями
Значит, (p+k+1)
Обратимся к неравенству f(k1) f(k) 0 и найдем значение k, для которого оно выполняется. При этом необходимо преобразовать байесовский риск r(, d) = f(k), после чего получаем неравенство f(k1) f(k) 0, которое выполняется, если С2 р + k)/(p + q + п) C1 0. Тогда (p + k)
Вывод. С помощью нерандомизированной байесовской функции получаем решение при одноступенчатом статистическом плане приемки партии изделий, если известно распределение доли дефектных изделий в партии, т.е. априорное распределение состояний природы.
Пример 8.1. Производитель продает торговой фирме большую (п = 100) партию изделий. По договору представитель торговой фирмы отбирает случайным образом п = 30 изделий. Контроль проводится по согласованной программе при одноступенчатом плане. Стоимость проверки одного изделия C1 = 180 руб., стоимость исправного изделия С2 = 2 000 руб.
Требуется найти критическое число k при предположении, что доля дефектных изделий W подчинена бета-распределению.
Предполагаем, что доля бракованных изделий при отлаженном производстве близка к нулю, поэтому g(W) будет иметь большое значение. Пусть аргументы бета-функции B(p,q) равны: p=1, q=5.
Нужно построить график распределения и определить минимальное число k. (Функция на графике при росте доли дефектных изделий будет быстро стремиться к нулю.)
Решение. Определим B(p,q):
Используя значения доли W (пусть W = 0; 0,05; 0,1; 0,2; ...,0,9;1), получаем:
Составим таблицу распределения g{W) при значении аргументов бета-функции: q = 5, р = 1 (табл. 8.9).
Таблица 8.9
Найдем критическое число k при п = 30, которое должно удовлетворять двойному неравенству:
Подставив численные значения параметров в эти неравенства, получаем k:
0,09*36 - 1 - 1 k 0,09*36 - 1.
1,24 k 2,24.
Следовательно, k = 2 .
Вывод. Критическое число равно 2, статистический план запишется (2|30).
Партия будет принята при числе бракованных в выборке из 30 изделий, не превышающем 2 шт. В противном случае партия будет забракована.
Пример 8.2. Для условий примера 8.1 при плане (2|30) подсчитать функцию потерь при: k = 3; k = 2 и возможном отказе в принятой партии двух изделий из числа непроверенных (N-n), если N = 100; k = 2 и возможном возврате изделий из числа непроверенных, если W= 0,05.
Решение. Определим функцию потерь при k = 3, полагая согласно 8.1, что р = 1:
8.1. Бета-распределение при р = 1,q=5
Найдем функцию потерь при k = 2, когда партия была принята, но затем в торговой фирме было обнаружено 2 неисправных изделия из числа непроверенных при сдаче:
L(W, a1) = 180n +2C2+2C2 = 180*30 + 4*2 000 = 5 400 + 8 000 = 13400 руб.
Вычислим функцию потерь при k = 2 и возможных отказах при W =0,05:
L(W, а1) = 180n + 2C2 + C2(N - n) = 5 400 + 4 000 + 70*0,050C2 = 9400 + 3,5*2000 = 16400 руб.
Поскольку 3,5 отказа невозможны (могут быть 3 или 4), добавляем (отнимаем) половину стоимости изделия и получаем:
L(W, a1) = (16400 ± 1000) руб.
Пример 8.3. Оставим условия примера 8.1, но изменим объем выборки. Вместо п = 30 примем п = 45. Требуется определить критическое число k, если оно удовлетворяет двойному неравенству при нерандомизированной байесовской функции решения r(, d)=f(k):
Решение. Запишем в принятых выше обозначениях условия: С1 = 180 руб.; С2 = 2 000 руб.; р = 1; q = 5, п = 45:
(p+q+n)=1+5+45=51;
Вычислим минимальное значение k:
0,09*51 - 1 - 1 k 0,09*51 - 1;
2,59 k 3,59.
Таким образом, k = 3.
Вывод. Партия будет принята при k == 1, 2 или 3, а при k = 4 или более партия изделии будет забракована, 4 бракованных изделия будут заменены в выборке на годные, остальные 55 из 100 изделий будут проверены.
Пример 8.4. Оценить возможности сбоев производства из-за нарушения кооперированных поставок.
С помощью методов математического программирования можно составить оптимальный план производства. Однако этот план при нерегулярности кооперированных поставок смежников может быть фактически не реализован.
В данной ситуации возможно вычислить вероятность регулярности кооперированных поставок, что должно соответствовать вероятности отсутствия сбоев производства.
Введем обозначения:
(состояние природы) - вероятность отсутствия сбоев производства = [0,1];
А = [0,1] - область решения статистика;
а - оценка вероятности .
Примем в виде квадратичной функцию потерь L(, a)= ( - а)2. Оценим вероятность по информации за предыдущий месяц. Пусть W и N - события, заключающиеся в том, что в предыдущем месяце были соответственно выполнены и не выполнены кооперированные поставки. Пространство выборок Х= {W, N}; d - нерандомизированная функция решения статистика, отображающая пространство выборок Х в пространство решений А.
Решение. Функция решения может быть записана следующим образом:
d(W) = a1; d(N) = a2; a1 А; а2 А.
Имеет место статистическая игра (, D, R).
Опишем функцию риска:
R(, d) = ML(, a).
Считаем, что вероятности событии будут:
P{W|} = ; P{N|} = 1 - .
Запишем функцию риска через а и .
Предположим, что для ряда месяцев вероятность отсутствия сбоев кооперированных поставок - это случайная величина с бета-распределением, имеющим параметры р 0 и q 0.
Функция плотности распределения вероятностей будет иметь вид:
Вид данной функции плотности распределения вероятностей можно определить, если примем бета-распределение с параметрами р = 3 и q = 1 ( 8.2 и табл. 8.10).
8.2. Бета-распределение при р = 3, q =1
Бета-распределение является априорным распределением состояний природы = [0,1]. Определим байесовский риск:
где M() = m1, и М(2) = т2 - первый начальный и второй начальный моменты при бета-распределении с функцией плотности g() соответственно.
Известно, что
Чтобы определить выражения для получения a1 и a2, необходимо минимизировать байесовский риск для априорного распределения . Продифференцируем r(, d) по a1 и a2 и результаты приравняем к нулю:
Вывод. Вероятность бесперебойной работы определится как т2/т1, если в прошлом месяце не было срывов кооперированных поставок. В противном случае вероятность бесперебойной работы предприятия будет равна (т1 m2)/(1 m1).
Пример 8.5. Оценить вероятность отсутствия перебоев в кооперированных поставках в данном месяце, если события W и N состоят соответственно в отсутствии и наличии срыва поставок в предыдущем месяце.
Априорное распределение - это бета-распределение с параметрами р = 3, q = 1. В данном распределении значения , близкие к единице, имеют большую плотность, чем значения, близкие к нулю.
Решение. Определим
Вычислим
Определим вероятность бесперебойной работы предприятия при отсутствии срыва поставок в предыдущем месяце:
Оценим вероятность бесперебойной работы предприятия, если в прошлом месяце было событие N - срыв кооперированных поставок:
Выводы. Вероятность бесперебойной работы предприятия в данном месяце при условии выполнения договорных обязательств по кооперированным поставкам, если в прошлом месяце также не было срывов, равна 0,8.
Если же в прошлом месяце был срыв в кооперированных поставках, то вероятность бесперебойной работы предприятия снизится в этом месяце до 0,6.
8.4. ОПРЕДЕЛЕНИЕ ОПТИМАЛЬНОГО ЗАПАСА ПРОДУКЦИИ ТОРГОВОЙ ФИРМЫ НА ОСНОВЕ СТАТИСТИЧЕСКИХ ДАННЫХПусть - рыночный спрос на продукт торговой фирмы для фиксированного периода (день, неделя, месяц). Воспримем это как спрос игрока 1. Этот спрос может быть любым действительным положительным числом. Область состояний = [0, ]. Продаваемый продукт оценивается, например, в килограммах и может заказываться в любом количестве. Нереализованный в данном периоде продукт не может быть продан в следующем периоде, так как теряет за время хранения свои потребительские качества. Значение заранее неизвестно.
Введем обозначения: а - запас продукта на некоторый период. Следовательно, считаем, что множество решений фирмы А = [0, ]; аА - конкретное решение фирмы (игрока 2), принимаемое в статистической игре с природой, которая определяет действительный спрос на продукт; L(, a) - функция потерь. Она является функцией платежей в исходной стратегической игре (, A, L); k1 - себестоимость + дополнительные затраты на хранение 1 кг продукта, который не был продан в установленное время, так как спрос на него оказался меньше прогнозируемого;
k2- потеря прибыли на 1 кг продукта, обусловленная отсутствием товара, спрос на который превысил заказанное количество.
Принимая указанные обозначения, запишем кусочно-линейную функцию потерь фирмы:
Стратегическую игру (, A, L) можно преобразовать в статистическую, если получить дополнительную статистическую информацию о спросе на продукт . Действительный спрос по периодам представлен заказчиком. Это вектор
который в различные периоды времени представляет разные размеры спроса. Пусть а = d(x) - статистическая нерандомизированная функция решения. Значение функции, определяющей оптимальное решение а об уровне запаса, найдем с помощью байесовской функции решения.
Известна функция действительного спроса на товар, соответствующего статистическому наблюдению, т. е.
Функцию априорного наблюдения G(|
Имеет место теорема: «Если, решая задачу, поставленную в форме статистической игры, статистик (игрок 2) провел эксперимент, наблюдая случайную величину Х с функцией условного распределения G(|
Согласно данной теореме нужно минимизировать математическое ожидание
С использованием формулы (8.1) можно определить математическое ожидание при апостериорном распределении спроса :
Минимизируя математическое ожидание функции потерь (8.2) относительно о, получим:
где f(a) - плотность в точке а апостериорного распределения спроса. В соответствии с необходимым условием (8.3) получим уравнение
откуда
Итак, с помощью байесовской функции получено выражение для оптимального запаса. Оно равно числу а0, удовлетворяющему равенству
где F(a0) -функция апостериорного распределения спроса на продукт.
Результат (8.4) с учетом (8.5) означает, что для a0 в распределении спроса должно выполняться условие
Для вычисления оптимального запаса а0 данного продукта на определенный период времени нужно:
1. Знать параметры k1 и k2, входящие в функцию потерь L(, a).
2. На основе статистических наблюдений получить апостериорное распределение спроса на товар.
3. С помощью функции этого распределения определить квантиль порядка
Если, в частности, k1 = k2, то оптимальный уровень запаса a0 будет соответствовать равенству F(a0) =
Распределение близко к нормальному N(M, ), где М - математическое ожидание, - среднее квадратичное отклонение.
Значение a0 (или квантиль порядка
Иногда распределение не относится ни к одному из известных исследователю законов распределения, тогда с помощью графика функции распределения спроса нужно определить квантиль порядка
Пример 8.6. Требуется определить оптимальное значение запаса товара. Известно: k1 = 0,8; k2 = 0,2; распределение спроса .
Решение. Представим распределение дневного спроса на товар, полученное по данным наблюдения (табл. 8.11).
По табл. 8.11 строим график распределения спроса на товар ( 8.3).
8.3. Определение квантиля распределения
Рассчитаем квантиль распределения:
По квантилю, равному 0,2 (см. 8.3), определяем a0 = 12,3 тыс. руб. Это стоимостное выражение искомого оптимального запаса продукции торговой фирмы, равное 12,3 тыс. руб.
Первоначально развитие теории стратегических матричных игр осуществлялось параллельно и независимо от линейного программирования. Позже было установлено, что стратегическая матричная игра может быть сведена к паре двойственных задач линейного программирования. Решив одну из них, получаем оптимальные стратегии игрока 1; решив другую, получаем оптимальные стратегии игрока 2. Математическое соответствие между стратегическими матричными играми и линейным программированием было установлено Дж. Б. Данцигом, сформулировавшим и доказавшим в 1951 г. основную теорему теории игр [23].
Теорема. Каждая матричная игра с нулевой суммой всегда имеет решение в смешанных стратегиях, т.е. существуют такое число v и такие стратегии U* и W* игроков 1 и 2 соответственно, что выполняются неравенства:
Поясним смысл доказываемых неравенств: если игрок 1 отклоняется от своей оптимальной стратегии, то его выигрыш не увеличивается по сравнению с ценой игры; если от своей оптимальной стратегии отклоняется игрок 2, то по сравнению с ценой игры его проигрыш не уменьшается.
Доказательство. Пусть матрица игры равна A =
Из этого следует, что от увеличения всех элементов матрицы A =
Для определения среднего оптимального выигрыша игрока 1, соответствующего первоначальной платежной матрице, необходимо из найденной цены игры вычесть величину а.
Рассмотрим теперь пару двойственных задач линейного программирования с матрицей условий A =
где Х- вектор искомых переменных задачи (П1). То же в скалярной форме:
Двойственная задача к задаче линейного программирования (П1) может быть записана следующим образом:
где Y - вектор искомых переменных задачи (П2).
То же в скалярной форме:
Все элементы матрицы А по предположению положительны, поэтому многогранные множества задач (П1) и (П2) ограничены. Многогранник задачи (П1) не пуст, так как Х = 0 является допустимым планом. Следовательно, задача (П1), а с ней (по первой теореме двойственности) и задача (П2) разрешимы, и их функционалы в оптимальных планах совпадают (вторая теорема двойственности):
(С, X*) = (У* В).
С учетом выбранных единичных векторов С и В получаем следующее соотношение:
Из условия YA С следует, что Y* 0, поэтому
Положительность значения v обеспечивается положительностью всех значений элементов платежной матрицы А.
Обозначим U* = vY*, W* = vX*. Поскольку v, X*, Y* неотрицательны, то U* 0, W* 0.
Кроме того,
или
Умножим обе части неравенства (ПЗ) слева на произвольный w-мерный вектор U 0, для которого справедливо
где В - единичный вектор.
Получим:
UAM* v(U,B) = v,
т.е. имеет место неравенство
UAM* v. (П5)
Также умножим обе части неравенства (П4) справа на произвольный n-мерный вектор W 0 , для которого справедливо
где С - единичный вектор.
Получим:
U*AM v(C,W) = v,
т.е. справедливо неравенство
U*AM v. (П6)
Сравнивая неравенства (П5) и (П6), приходим к соотношению
UAW* v U*AW,
т.е. U* и W* - оптимальные стратегии, а v - цена игры с платежной матрицей А, что и требовалось доказать.
Следствие (С1). В процессе доказательства основной теоремы теории игр с платежной матрицей A =
Составляющие оптимальных стратегий
Цена игры
Следствие (С2). Вместо приведенной выше пары двойственных задач линейного программирования (П7) иногда удобнее рассматривать другую пару задач, имеющих более ясный содержательный экономический смысл:
1. Прямая задача. Игрок 1 стремится увеличить цену игры:
v mах (П8)
при условиях:
т. е. игрок 1 действует так, чтобы его средний выигрыш при использовании его стратегий с частотами ui для любой j-й стратегии игрока 2 был не меньше величины v, которую он стремится увеличить;
т. е. сумма частот применения стратегий игрока 1 равна единице.
2. Двойственная задача. Игрок 2 стремится уменьшить свой проигрыш:
v min (П9)
при условиях:
т. е. игрок 2 действует так, чтобы его средний проигрыш при использовании его стратегий с частотами wj для любой i-й стратегии игрока 1 не превышал величины v, которую он стремится уменьшить;
т. е. сумма частот применения стратегий игрока 2 равна единице.
В такой постановке каждая из задач (П8) и (П9) содержит на одно переменное (v) и на одно ограничение (
Пример решения задачи. Решить аналитически (используя мажорирование) игру с платежной матрицей
Решение. Если для первых двух строк матрицы взять весовые коэффициенты соответственно 0,25 и 0,75, то получим:
0,25 * 24 + 0,75 * 0 + 6 4;
0,25 * 0 + 0,75 * 8 = 6 4.
В итоге третья строка матрицы мажорируется выпуклой линейной комбинацией первой и второй строк, поэтому третья строка вычеркивается, а матрица преобразуется к следующему виду:
В матрице есть два нуля. Для того чтобы все элементы матрицы стали больше нуля, прибавим к каждому элементу по единице. Матрица примет вид:
Далее ставим и решаем пару задач (двойственных) линейного программирования:
Для первой задачи (игрока 2) из условия угловой точки следует:
25x1 + x2 = 1;
х1 + 9x2 = 1,
откуда получаем оптимальное решение:
Находим оптимальные смешанные стратегии игрока 2:
Для второй задачи (игрока 1) из условия угловой точки следует:
25y1 + y2 = 1;
y1 + 9 y2 = 1,
откуда оптимальное решение равно:
Оптимальными смешанными стратегиями игрока 1 будут:
Цена игры рассчитывается с учетом ее поправки на единицу:
v = 1:0,1427-1=6,008.
Ознакомившись теперь с основной теоремой теории игр, методом их сведения к паре двойственных задач линейного программирования, мы видим, что, если в исходной матрице игры А в силу любых причин не произведены все возможные мажорирования строк и столбцов, это не скажется на результатах решения игры, но задачи линейного программирования получатся большей размерности, чем потенциально они могли быть. Соответственно в составе оптимальных смешанных стратегий игроков окажутся неактивные чистые стратегии.
Вероятность случайного события - основная категория в теории вероятностей - положительное число, заключенное между нулем и единицей: 0 Р(А) 1, где Р - обозначение вероятности, А - случайное событие.
Дискретные и непрерывные случайные величины - основные числовые показатели в теории вероятностей. Дискретная случайная величина может принимать конечное или бесконечное счетное множество значений. Возможные значения непрерывной случайной величины занимают некоторый интервал числовой оси (конечный или бесконечный).
Дисперсия - числовая характеристика степени разброса значений случайной величины. Дисперсия постоянной величины равна нулю. Постоянный множитель можно выносить за знак дисперсии, возведя его в квадрат: D(CX) = C2D(X), где D - знак дисперсии; С постоянная величина.
Дисперсия суммы двух независимых случайных величин равна сумме дисперсий этих величин: D(X + Y) = D (X) + D(Y).
Дисперсия суммы нескольких взаимно независимых случайных величин равна сумме дисперсий этих величин. Сумма постоянной и случайной величин равна дисперсии случайной величины. Дисперсия разности двух независимых величин равна сумме их дисперсий.
Достоверное событие - событие, в котором каждый элементарный исход испытания благоприятствует событию. Вероятность достоверного события равна 1.
Закон распределения случайной величины - соотношение, устанавливающее связь между возможными значениями случайной величины и соответствующими им вероятностями. Простейшей формой задания закона распределения дискретной случайной величины Х является таблица, в которой перечислены возможные значения случайной величины и соответствующие им вероятности (ряд распределения). Для непрерывной случайной величины нельзя построить ряд распределения, так как она содержит бесконечное множество возможных значений, которые сплошь заполняют некоторый промежуток. Эти значения нельзя перечислить в какой-либо таблице. Каждое отдельное значение непрерывной случайной величины не обладает никакой отличной от нуля вероятностью.
Линейное программирование - раздел прикладной математики, изучающий задачу отыскания минимума (максимума) линейной функции многих переменных при линейных ограничениях в виде равенств или неравенств. Общую задачу линейного программирования формулируют так:
найти минимум функции п переменных
Задача максимизации линейной функции сводится к задаче ее минимизации заменой знаков всех коэффициентов сj на противоположные.
Математическое ожидание - числовая характеристика случайной величины, определяющая ее среднее значение. Свойства: математическое ожидание постоянной величины равно самой постоянной; постоянный множитель можно выносить за знак математического ожидания; математическое ожидание произведения двух независимых случайных величин равно произведению их математических ожиданий: M(ХY) = M(X)M(Y); математическое ожидание суммы (разности) двух случайных величин равно сумме математических ожиданий слагаемых: М(Х+ Y) = М(Х) + M(Y), где М - знак математического ожидания; М(Х) - математическое ожидание случайной величины X.
Невозможное событие - событие, которое не может произойти в результате испытания. Вероятность невозможного события равна 0.
Независимое событие - событие В не зависит от А, если появление события А не изменяет вероятность события В, т.е. условная вероятность события В равна его безусловной вероятности: РA(В) = Р(В). Если событие В не зависит от события А, то и событие А не зависит от события В. Это означает, что свойство независимости событий взаимно.
Попарно-независимые события - несколько событий, каждые два из которых независимы. Пусть А, В, С попарно независимы, тогда независимы А и В, А и С, В и С. Вероятность совместного появления нескольких событий, независимых в совокупности (АВС), равна произведению вероятностей этих событий: Р(АВС) = Р(А)Р(В)Р(С).
Практически достоверное событие - событие, вероятность которого не в точности равна единице, но очень близка к ней: Р(А) 1.
Практически невозможное событие - событие, вероятность которого не в точности равна нулю, но очень близка к нему: Р(А) 0.
Например, если парашют не раскрывается с вероятностью 0,01, - это недопустимо, а если поезд дальнего следования опоздает на 0,01 мин, можно считать, что поезд пришел вовремя.
Предмет теории вероятностей - изучение вероятностных закономерностей массовых однородных случайных событий.
Противоположное событие событие А (не А), состоящее в непоявлении события А.
Теорема умножения вероятностей - инструмент для вычисления вероятности совместного события: Р(АВ) = Р(А)РA(В), где Р(АВ) вероятность совместного события; Р(А) - вероятность появления события А; РA(В) - вероятность появления события В при условии, что событие А уже наступило. Вероятность совместного появления нескольких событий равна произведению вероятностей одного из них на условные вероятности всех остальных, причем вероятность каждого последующего события вычисляется в предположении, что все предыдущие события уже появились. В частности, для трех событий: Р(АВС) = Р(А)РA(В) РAB(С). Порядок, в котором расположены события, может быть любым.
Теорема умножения независимых событий - частный случай теоремы умножения вероятностей. Вероятность совместного наступления независимых событий А и В равна произведению вероятностей этих событий: Р(АВ) = Р(А)Р(В).
Функция распределения (или интегральный закон распределения) - функция F(x), определяющая для каждого значения х вероятность того, что случайная величина Х примет значение, меньшее х, т.е. F(x) = Р(Х х). Эта функция распределения существует как для дискретных, так и для непрерывных случайных величин.
1. Вальд А. Последовательный анализ: Пер. с англ. - М.: Физмат-гиз, 1960.
2. Вентцель Е. С., Овчаров А. А. Теория вероятностей и ее инженерные приложения. - М.: Наука, 1988.
3. Гольштейн Е. Г., ЮдинД. Б. Новые направления в линейном программировании. - М.: Сов. радио, 1966.
4. Дубров А. М. Последовательный анализ в статистической обработке информации. - М.: Статистика, 1976.
5. Дубров А. М. Математико-статистическая оценка эффективности в экономических задачах. - М.: Финансы и статистика, 1982.
6. Дубров А. М. Статистические методы в инвестиционной деятельности // Рубин Ю. Б., Солдаткин В. И., Петраков Н. Я. Общая редакция. Инвестиционно-финансовый портфель. - М.: Совинтэк, 1993. - С. 163-176.
7. Замков О. О., Толстопятенко А. В., Черемных Ю. Н. Математические методы в экономике. - М.: ДИС, 1997. - С. 245-267.
8. Клейнер Г. Б. Риски промышленных предприятий // Российский экономический журнал. - 1994. - № 5-6. - С. 85-92.
9. Клейнер Г. Б., Тамбовцев В. Л., Качалов Р. М. Предприятие в нестабильной экономической среде: риски, стратегии, безопасность. -М.: Экономика, 1997.
10. Комарова Н. В., Гаврилова Л. В. Фирма: стратегия и тактика управления рисками // Вестник Санкт-Петербургского университета. Сер. 5. Экономика. - 1993. - Вып. 2 (12). - С. 92-95.
11. Лагоша Б. А. Об оценке эффективности инвестиционных проектов //Тез. докл. научной конференции «Организационные науки и проблемы государственного регулирования рыночной экономики». - М.:
ЦЭМИ РАН, Международная академия организационных наук, 1996. -С. 75-77.
12. Мак Кинси Дж. Введение в теорию игр: Пер. с англ. - М.: Физматгиз, 1960.
13. Нейман Дж., Моргенштерн О. Теория игр и экономическое поведение: Пер. с англ. - М.: Наука, 1970.
14. Основные методические положения оптимизации развития и размещения производства / Под. ред. академиков А. Г. Аганбегяна и Н. П. Федоренко. - М.: Наука, 1978.
15. Ожегов С. И. Словарь русского языка. - М.: Русский язык, 1981.
16. Первозванский А. А., Первозванская Т.Н. Финансовый рынок: расчет и риск. - М.: Инфра-М, 1992.
17. Самуэльсон П. Экономика. Т. 1. - М.: МГП «Алгон», ВНИИСИ, 1992.
18. Соколинская Н. Э. Экономический риск в деятельности коммерческого банка. (Методы оценки и практика регулирования). - М.: Общество «Знание» РСФСР, 1991.
19. Уилкс С. Математическая статистика. - М.: Наука, 1967.
20. Хозяйственный риск и методы его измерения: Пер. с венг. / Т. Бочкаи, Д. Месена, Д. Мико, Е. Сеп, Э. Хусти. М.: Экономика, 1979.
21. Gren J. Ocena jacosej wyrobow obiektow ze wzgledn na wielle wymagan. - Warszawa, 1970.
22. Gren J. Statystyczne i ich Zastosowania. Panstwowe Wydawnictwo Ekonomiczne. - Warszawa, 1972.
23. Dantzig G. B. A proof of the equivalence of the programming and the game problem. Activity Analysis of Production and Allocation, ed. By Koopmans T. C., Cowles Commission Monograph, № 13, New York, Wiley, 1951. -P.330-335.
ПРЕДМЕТНЫЙ УКАЗАТЕЛЬБезразличие к риску 73, 74
Безусловный денежный" эквивалент (БДЭ) 50, 67
Величина страхования оптимальная 78, 80
Вероятность 13, 15, 25, 33, 57, 62, 65, 72, 81, 101, 112, 117, 157
Дерево решений 47, 48, 53
Дисперсия 13, 58
Задача линейного программирования 19, 30, 36, 86, 90,158, 162
Игра антагонистическая 18, 108, 113
одношаговая 19
многошаговая 19
с природой 20, 38, 45, 64
с седловой точкой 22, 24, 26, 33, 37
статистическая 20, 108, 110, 111, 114, 123, 129, 136, 149, 153
стратегическая 16, 20, 38, 42, 113, 114, 123, 129, 153
Инвестиции 86, 88, 92, 99, 104
Индекс риска 86
Комбинация стратегий линейная выпуклая 33, 34
Коэффициент дисконтирования 93, 94, 97, 99, 103, 106
Критерий максимакса 42, 45
минимаксного риска (Сэвиджа) 43, 45
пессимизма-оптимизма (Гурвица) 43, 44, 45
Мажорирование (доминирование) стратегий 32, 35, 39, 41, 164
Максимин 21, 22
Математическое ожидание 13, 26, 58, 101, 111, 113
Матрица выигрышей 41, 43, 47
платежная 17, 29, 32, 38, 40, 47, 51, 56, 60, 64
рисков 40, 43, 47
Минимакс 21, 22
Неопределенность 40, 42
Несклонность к риску 73, 74
Ожидаемая денежная оценка (ОДО)50, 52, 55, 65, 67, 71, 74, 77
Полезность по Нейману - Моргенштерну 70, 71, 73, 76, 80
Планирование финансовое 86
Рандомизация 109, 112
Риск 10, 38, 40, 46, 59, 68, 71, 74, 76, 89, 109, 114, 115
Склонность к риску 44, 59, 73, 74, 76
Спрос на страхование 80, 82
Среднее квадратичное отклонение 13, 59, 61
Стратегия активная 27, 29
игрока 17, 20, 158
оптимальная 24, 27, 29, 108
смешанная оптимальная 26, 27, 29, 30
чистая оптимальная 23
Стоимость проекта чистая приведенная 93, 96, 97,99
Теорема основная теории игр 158, 165
Теория игр 16
статистических решений 46
Точка седловая 20, 23
Функция рандомизированная 110, 136, 141
нерандомизированная 110, 124, 136, 140, 144, 149
потерь 111
решения байесовская 112, 114
риска 111, 112, 141
Цена игры 22, 26, 27, 29
чистая верхняя 21, 24
чистая нижняя 21, 24
Ценность ожидаемая точной информации 55, 56
фирмы 96
Учебное пособие
Дубров Абрам Моисеевич
Лагоша Борис Александрович
Хрусталев Евгений Юрьевич
МОДЕЛИРОВАНИЕ РИСКОВЫХ СИТУАЦИЙ В ЭКОНОМИКЕ И БИЗНЕСЕ
Ведущий редактор Л.А. Табакова
Редактор А.М. Мжтормка
Художественный редактор Ю.И. Артюхов
Технический редактор Е.В. Кузьмина
Корректоры Т.М. Колоакова, Т.М. Васильева
Обложка художника Н.М. Биксеитеевж
Компьютерная верстка О.Е. Хрусталева
ИБ№3965
Лицензия ЛР № 010156 от 29.01.97
Подписано в печать 17.01.2000. Формат 60х88/16
Гарнитура «Таймс». Печать офсетная
усл.п.л. 10,8. Уч.-изд. л. 8.23
Тираж 4000 экз. Заказ 325 «С» 031
Издательство «Финансы и статистика»
101000, Москва, ул. Покровка, 7
Телефон (095) 925-35-02, факс (095) 925-09-57
E-mail: mailfinstat.ru http://www.finstat.ru
Великолукская городская типография
Комитета по средствам массовой информации и связям
с общественностью администрации Псковской области,
182100, г. Великие Луки, ул. Полиграфистов, 78/12
Тел./факс: (811-53) 3-62-95
E-mail: VTLMART.RU