Ерешко А.Ф. - Методы декомпозиции и локально - оптимальные стратегии в задачах управления портфелем ценных бумаг
Рассматриваются задачи управления портфелем финансовых инструментов (активов и пассивов финансовых институтов, ценных бумаг) в динамической постановке. Работа состоит из двух частей.
В первой части содержится обзор развитой на Западе методологии для выработки подходов к задаче управления портфелем финансовых инструментов, выбору критериев, генерированию сценариев для случайных величин, выбору алгоритмов решения получающихся задач стохастического динамического управления.
Во второй части работы излагаются оригинальные результаты автора. Сформулирована двухкритериальная задача об управлении портфелем в динамике с целью максимизации ожидаемого дохода в конце процесса от вложенного капитала в начале и минимизации критерия допустимых потерь. Динамика портфеля записывается в переменных - количествах ценных бумаг в портфеле. Основные результаты относятся к динамической задаче при наличии неопределенных факторов в виде марковского процесса. В такой постановке для решения задачи по выбору одной из паретовских точек в пространстве двух критериев применим формализм динамического программирования. Удается установить принцип линейного разложения оптимального результата текущей оптимальной оценки конечного результата и как следствие установить оптимальность простых стратегий для задачи максимизации математического ожидания конечного результата. Предложены вычислительные процедуры прогонки, которые основываются на декомпозиции исходной задачи на случайный процесс и детерминированный.
Введение
Проблема управления портфелем ценных бумаг, активов и пассивов, финансовых инструментов является фундаментальной в финансовой теории и практике. По этой причине к ней было привлечено большое внимание в RAND Corporation, которая специализировалась на стратегических исследованиях Западных экономик [1]. В то же время эта проблема как задача управления в условиях неопределенности также относится и к фундаментальным проблемам в теории принятия решений [2, 3].
Исследования в этой области проводились такими крупными ученым как Р. Беллман, Дж. Данциг, Р. Мертон. Ученик Дж. Данцига - Г. Марковиц - исторически первым сформулировал задачу управления портфелем в статическом случае как задачу исследования операций и теории игр, основываясь на описании неопределенности как случайного процесса и рассмотрев двухкритериальную задачу с критериями математического ожидания и дисперсии [4].
И для финансовой теории и для теории принятия решений базовой является ссылка авторов работ [5 - 10] на публикацию [4].
Первые публикации Г. Марковица вызвали большой поток работ как в финансовой литературе, так и в литературе по теории исследования операций (см. рис. 1).
Исследования финансистов - экономистов были направлены на изучение различных содержательных интерпретаций и обобщений. Так, в статическом случае были получены принципиальные результаты, имевшие широкое практическое применение, например установлено свойство разложения оптимального портфеля на безрисковую и рисковую составляющие для важного частного случая наличия на рынке безрискового актива, исследованы фундаментальные свойства равновесного рынка оптимальных портфелей и т.д.
Усилия в исследовании операций, естественно, были направлены на рассмотрение многокритериальных задач с большим числом критериев, на изучение и использование задач в динамической постановке, способах адекватного описания случайных процессов изменения цен, на разработку практически применимых численных методов для решения возникающих задач оптимизации большой размерности (см. работы [6 - 10]).
Несмотря на широкий фронт проведенных работ в этом направлении, в портфельной теории остались неизученными некоторые аспекты моделирования процесса принятия решений, особенно связанные с оценкой риска в динамическом случае [10 - 12].
Настоящая работа относится к последнему направлению.
Цель работы состоит в использовании методов теории управления для решения динамических стохастических задач в дискретном времени, для исследования стратегий управления портфелем активов и пассивов и вообще финансовых инструментов в динамическом случае. Основные результаты относятся к динамической задаче при наличии неопределенных факторов в виде марковского процесса и двухкритериальной задаче при учете риска в виде критерия допустимых потерь и ожидаемом доходе как математическом ожидании. В такой постановке для решения задачи по выбору одной из паретовских точек применим формализм динамического программирования. Удается установить принцип линейного разложения оптимального результата текущей оптимальной оценки конечного результата и как следствие установить оптимальность простых стратегий для задачи максимизации математического ожидания конечного результата.
Как известно [10], существует два подхода к задачам управления портфелем ценных бумаг: технический анализ и фундаментальный. Первый характеризуется тем, что реакции лица, принимающего решения, на меняющуюся обстановку - динамику цен - основываются на формальном или неформальном анализе и обработке исторических рядов наблюдения. Второй подход при выработке рационального решения базируется на макроэкономическом анализе факторов, определяющих развитие рынка, и уже на основе экономического анализа формулируется стратегия поведения финансового участника операции. По этой финансовой классификации работа относится скорее к техническому анализу. Применение данного технического подхода имеет большую литературу на Западе и большое поле для применения, особенно в современных условиях быстрого развития вычислительных мощностей и алгоритмов, позволяющих решать задачи большой размерности. Вычислительные аспекты современного состояния теории управления портфелем в случае статических задач большой размерности содержатся в обзоре Г. Марковица [13].
Основные проблемы, которые возникают в процессе использования динамических моделей управления портфелем ценных бумаг, весьма подробно описаны в книге [14].
Настоящая работа состоит из двух частей.
В первой части (гл. 1) приведен (с отдельными комментариями) обзор существующего состояния дел в этой области, опирающийся на статьи [15, 16] и статьи отечественных авторов.
Во второй части (гл. 2) приводятся оригинальные результаты автора, развивающие результаты работы [17]. Основное внимание уделяется постановке задачи управления с двумя критериями (математическим ожиданием и критерием допустимых потерь) и вопросу эффективного решения задачи в случае одного критерия - математического ожидания конечного результата. Последняя задача характерна для случая управления портфелем дисконтных облигаций.
Содержание раздела