d9e5a92d

Физиологическое понятие дыхания


Частота сердечных сокращений при пранаяме слегка повышается. В табл.19. сведены все те немногие, из известных на сегодня, данные.

Эти небольшие изменения можно рассматривать в рамках функциональной адаптации деятельности сердца к увеличившейся деятельности дыхательной мускулатуры при форсированных видах пранаямы, а в случае замедленного дыхания гиперкапния крови могла бы действовать как стимулятор кровообращения. Наряду с такого рода незначительными адаптациями к мышечной деятельности вполне возможны физические и нервные влияния пранаямы на кровообращение (об этом см.4.6.2).

Таблица 19. Повышение частоты сердечных сокращений (ДЧСС) при различных пранаямах в сравнении с нормальным дыханием.

Дыхание
ДЧСС
Литература
[1/мин]
Ритмический вдох
0,1
Gopal 1973, цит. по: Funderburkу (кол-во испытуемых не указано)
Ритмический выдох
-3,8
Глубокий вдох с бандхами
11,2
Глубокий выдох с бандхами
7,2
Глубокий вдох без бандх
6,2
Глубокий выдох без бандх
-4,4
Уджайи
4
Wenger и Bagchi 1961 (5 испытуемых)
Бхастрика
3
Капалабхати
13



4.6. Роль дыхания в организме человека


4.6.1. Физиологическое понятие дыхания

Физиологическое понятие дыхания имеет отношение в первую очередь к функции газообмена; под дыханием понимают газообмен организма. В той или иной форме обмен газообразных веществ с окружающей средой имеет место повсюду в мире живого, от одноклеточных до сложноорганизованных животных. У последних каждая ткань, каждая клетка существенно связана с газообменом.

Газообмен осуществляется посредством диффузии и на клеточном уровне непрерывен; диффузия вызывается вследствие разности парциальных давлений. Под парциальным давлением газа понимают процентное отношение давления данного газа к общему давлению газовой смеси.

Парциальное давление кислорода в атмосферном воздухе составляет 21,3 кПа (160 мм рт.ст.) и углекислого газа 0,04 кПа (0,3 мм рт.ст.) Обмениваемые массы кислорода и углекислого газа по 1-ому закону диффузии Фика прямо пропорциональны падению парциального давления между альвеолярным воздухом и кровью.
Как только множество клеток образует ткань, то расстояния для диффузии становятся столь велики, что эффективный газообмен более уже невозможен. Поэтому у сложноорганизованных организмов имеются транспортные системы, которые осуществляют доставку дыхательных газов из внешней среды в непосредственное окружение клеток. У человека транспорт дыхательных газов, которые в крови химически связаны в количестве, пропорциональном их парциальным давлениям, на различные расстояния осуществляет кровообращение. Газообмен между кровью и внешней атмосферой совершается в легких.

При этом идет непрерывный процесс диффузии газов между наполненными воздухом альвеолами легких и кровью, текущей по легочным капиллярам. Для того, чтобы альвеолярный воздух сохранял примерно постоянный состав при непрерывном газообмене с кровью, этот воздух с каждым вдохом должен «обновляться» (вентиляция).

Процесс периодического обновления воздуха в физиологии именуется внешним дыханием (процессы диффузии в тканях тела, включая окислительные процессы при обмене между средами, в отличие от внешнего называют внутренним дыханием). Итак, внешнее дыхание связано с двигательной активностью аппарата «обновления воздуха».

С этими дыхательными движениями сопряжен и ряд других функций, не связанных с газообменом, которые позволяют по-иному осветить понятие дыхания.
Обеспечивая газообмен, внешнее дыхание представляет собой такой вид жизнедеятельности, который, вообще говоря, дает основание для отождествления дыхания и жизни. При дыхании количество вентилируемого воздуха соотносится с потребностью организма, и это количество поддерживается на стабильном уровне благодаря «химической регуляции дыхания» (см.ниже).

Все остальные функции внешнего дыхания не зависят от количества вентилируемого воздуха, однако они зависят от формы дыхания. Внешнее дыхание выполняет следующие «недыхательные функции».


Восприятие запахов, обоняние возможно только посредством особых форм вдоха (медленный, глубокий вдох, акт принюхивания). Любая звуковая коммуникация (речь, крик, пение) становится возможной только благодаря специальным формам выдоха.

Внешнее дыхание связано и с выразительными движениями невербальной коммуникации (стон, смех, рыдание, кашель) и, равным образом, с психическими переживаниями (см. ниже). Кроме того, дыханию как двигательному акту присущи некоторые вспомогательные функции, например, при сжатии, дыхание действует как сила, поддерживающая туловище при выполнении тяжелой работы или как ритмизирующий, координирующий механизм при целенаправленных движениях.

Дыхание, таким образом, жизненно важно не только с точки зрения обмена веществ, но также и с точки зрения поведения (ориентировки и коммуникации). Многообразие влияний и взаимодействий указывает на центральную роль внешнего дыхания в организме - никакой другой вид жизнедеятельности не имеет столь многосторонних взаимосвязей! - функционально дыхание лежит на стыке телесного и духовного.
Пранаяма по внешнему исполнению представляет собой произвольное управление формой дыхания, и взгляд на структуру многогранных взаимодействий дыхания с другими системами организма (20) возможно укажет нам путь, где надо искать смысл «обуздания праны».

4.6.2. Организация процесса внешнего дыхания

Генезис дыхательного ритма

Внематочная жизнь человека начинается вдохом и заканчивается выдохом, и между ними цепь циклов вентиляции никогда не обрывается. Для того, чтобы эта цепь дыхательных циклов постоянно функционировала, необходима стимуляция в течение всей жизни. Ритмические жизненные процессы, не затухающие при жизни, а также являющиеся спонтанными и автономными, именуют автоматизмами.

Источник ритмов, генератор, обычно можно локализовать в том или ином центре автоматизма. Внешнее дыхание представляет собой такого рода автоматию, центр которой находится в стволе головного мозга.

В человеческом организме имеется множество автоматизмов. Наиболее известен среди них автоматизм сердца, исходящий от пейсмейкера - «водителя ритма» - синусного узла и атриовентрикулярного (предсердно-желудочкого) узла.

Кроме того, известны центры автоматизма, например, в стенках кишечника и уретры, от которых идет ритмическая перистальтика. Центры автоматизма в таламусе ответственны за ритмы ЭЭГ, но о цели их деятельности ничего неизвестно (см.5.3), наконец, для сенсомоторного тремора также предполагается наличие генератора ритма в ЦНС.

Центр автоматии дыхания нельзя ни точно ограничить, ни локализовать в одной точке. На основе нейрофизиологических исследований можно принять за дыхательный центр популяцию нейронов, которая простирается от ростральной границы на несколько миллиметров каудальнее четверохолмия до области в несколько миллиметров каудальнее обекса (данные для кошки, собаки и кролика по: Koepchen 1976). Анализ функции этой нейронной популяции проводился до сих пор экспериментально с помощью перерезки, раздражения и отведения клеточных потенциалов действия.

Отсюда структура дыхательного центра реконструируется следующим образом (см.21).


21. Положение дыхательного центра в варолиевом мосту и продолговатом мозге (a); спонтанные дыхательные движения при сечении различных отделов дыхательного центра (b); электрическая активность инспираторных (IN) и экспираторных (EN) нейронов в зависимости от фаз дыхания (с). (А - пейсмейкер варолиевого моста, B - апнейстический центр, С - медуллярный центр, I - направление вдоха).

При отсутствии повреждений в популяции нейронов, расположенных в границах вышеописанной области, ритмическое дыхание сохраняется даже при полном хирургическом прерывании афферентных связей этого дыхательного центра, и следовательно, дыхательный ритм образуется именно здесь. В дыхательном центре расположены последовательно сверху вниз: центр пневмотаксиса (пейсмейкер нормальной частоты дыхания), затем т.н. апнейстический центр [при выключении вышерасположенного пейсмейкера наблюдается продолжительный вдох (apneusis), который в противном случае, по-видимому, регулярно прерывался бы вышерасположенным центром], и наконец, медуллярный пейсмейкер, порождающий нерегулярную «одышку».



Содержание раздела