Множество вариантов, систематизированных в морфологических таблицах, может быть отражено списком качественных признаков. Список признаков, определяющий вариант морфологического множества, представляет его признаковый образ. Количество признаковых образов и собственно признаков, используемое в конкретном исследовании, может быть достаточно большим. Это делает морфологическое множество труднообозримым и малодоступным для анализа на умозрительном уровне.
Более четкие результаты могут быть получены при использовании математических методов, специально предназначенных для сжатия информации и количественной характеристики интегрированных свойств анализируемого материала.
Множество образов вариантов систем может быть представлено как матрица, имеющая q столбцов и р строк (порядка p х q), причем номеру столбца соответствует наименование системы
Sj (j = 1, 2, ... , q),
а номеру строки — название признака
Zi (i =1, 2,..., р).
В ряде случаев номеру строки ставится в соответствие значение признака. Информационным содержанием матриц являются указания о присутствии или отсутствии каждого из учитываемых признаков в рассматриваемых системах. При этом если i-й признак присутствует в j-й системе, то на пересечении i-й строки и j-ro столбца помещается "1", в противном случае — "0".
Любой j-й столбец матрицы назовем описанием j-й системы, любую i-ю строку — описанием i-го признака.
В терминах теории множеств
Формула (5.1) читается: семейство множеств S, состоящее из всех Sj, таких, у которых элементы j принадлежат множеству J. Аналогично семейство множеств
есть индексированное множество, а I — индексное множество:
Индексация позволяет различать множества, состоящие из одинаковых элементов.
Пример матрицы образов представлен в табл. 5.3.
Таблица 5.3 Матрица образов как семейство множеств
|
S1 |
S2 |
S3 |
… |
Sq |
Z1 |
0 |
1 |
0 |
… |
1 |
Z2 |
1 |
1 |
0 |
… |
1 |
Z3 |
1 |
1 |
1 |
… |
0 |
… |
… |
... |
... |
… |
… |
Zp |
0 |
0 |
0 |
0 |
0 |
Семейство множеств S или Z с заданными на них отношениями можно рассматривать как системы, в которых связи между элементами образуют определенную структуру. Следовательно, содержание задач по обработке матриц образов систем включает подбор типов отношений и анализ структуры порождаемых ими систем.
Рассмотрим основные меры, порождающие отношения на множестве исследуемых систем.