Контрольный вопрос 12.1. В чем разница между инвестиционным портфелем молодого человека с гарантированной занятостью и инвестиционным портфелем пенсионера, для W доход, приносимый им — это единственное средство существования?
ОТВЕТ. Молодой человек, не рискующий потерять работу, может рассчитывать на длительный период регулярного получения жалованья, размер которого, возможно будет увеличиваться с ростом инфляции. Для него инвестирование в акции не будет столь рискованным делом, как для пожилого вкладчика, который заинтересован в том, чтобы обеспечить себе стабильный источник дохода до конца жизни. Молодой человек в какой-то мере защищен от инфляции, а пожилой — нет, поэтому ем\' имеет смысл подыскать себе форму страхования от роста цен.
Контрольный вопрос 12.2. Существует ли у вас фиксированный период пересмотра решений? Какова его протяженность?
ОТВЕТ. Ответы зависят от конкретных обстоятельств каждого студента.
Контрольный вопрос 12.3. Как вы полагаете, увеличивается ли толерантность к риску с повышением уровня благосостояния человека? Почему?
ОТВЕТ. У более богатого человека может появиться желание подвергнуться большему риску (по сравнению с менее богатым), потому что у него больше возможностей делать большие ставки и проигрывать. Другими словами, даже после проигрыша он будет достаточно богат.
Контрольный вопрос 12.4. Какими будут безрисковые активы, если за расчетную денежную единицу принят швейцарский франк, а период пересмотра решений равен одной неделе?
ОТВЕТ: Бескупонные облигации правительства Швейцарии со сроком погашения через неделю, деноминированные в швейцарских франках.
Контрольный вопрос 12.5. Найдите на рис. 12.1 точку, которая соответствует портфелю J. С помощью табл. 12.1 определите состав данного портфеля, его ожидаемую доходность и стандартное отклонение. Какая часть от общей суммы в 100000 долл. будет вложена в рискованный актив, если вы выберете портфель J?
ОТВЕТ. 75000 долл. будет вложено в рискованный актив, а 25000 долл. — в безрисковый.
Контрольный вопрос 12.6. Где будет находиться пересечение прямой риск/доходность с осью OY и каков будет ее наклон (рис. 12.1), если безрисковая процентная ставка будет равна 0,03 годовых, а ожидаемая ставка доходности рискованного актива — 0,] 0 годовых? ОТВЕТ. Точка пересечения прямой с осью ОУ имеет значение 0,03, а коэффициент наклона прямой снижается с 0,4 до 0,35. Контрольный вопрос 12.7. Как инвестор может получить ожидаемую ставку доходности в 0,105 годовых, вложив средства в рискованный актив 1 и безрисковый актив? Каким будет стандартное отклонение такого портфеля? Сравните это значение со стандартным отклонением рискованного актива 2. ОТВЕТ. Надо вложить 56,25% в рискованный актив, а остальное — в безрисковыи; тогда будет достигнута ожидаемая ставка доходности, равная 0,105. Стандартное отклонение портфеля равно 0,1125 (сравните со стандартным отклонением для рискованного актива 2, которое равно 0,15). Контрольный вопрос 12.8. Каково среднее значение доходности и ее стандартное отклонение для портфеля, который на 60% состоит из рискованного актива 1 и на 40% рискованного актива 2, если их коэффициент корреляции равен 0,1? ОТВЕТ. Е (г)- 0,6х0,14 +0,4х0,08 =0,114 (72=(0,6)2x(0,2)2+(0,4)2x(0,15)2+2(0,6)(0,4)(0,l)(0,2)(0,15)= 0,01944 а =0,1394 Контрольный вопрос 12.9. Предположим, инвестор выбрал портфель, который на рис. 12.5 соответствует точке, лежащей на отрезке между точками F и Т на расстоянии в три четверти длины отрезка от точки F. Другими словами, 75% его портфеля вложено в портфель, соответствующий тангенциальной точке, а 25% — в безрисковый актив. Какова ожидаемая ставка доходности и стандартное отклонение этого портфеля ? Если у инвестора имеется 1000000 долл., то сколько ему следует вложить в каждый из трех активов? ОТВЕТ. Е (г) = 0,12154 х 0,75 + 0,06 х 0,25 = 0,1062 = 0,75 х 0,14595 = 0,1095 Надо вложить 25% в безрисковый актив, 51,9% (0,75х69,2) в рискованный актив 1, а 23,1% (0,75х30,8) — в рискованный актив 2.