Стратегии обучения и самообучения 2


Рассмотрим проблему динамического включения новых частных эталонов в состав обобщенного на фоне уже произведенного частичного обучения нейросети.

Пусть предъявление эталонов А1&B1&C2 и А1&В1&С4 (обобщенный эталон А1&В1&С2&С4), требующих решения R1, а также предъявление обобщенных эталонов А1&В2&С1&С2&СЗ; А1&В2&С4&С5, A2&B3&C1&C2&C3&C4&C5, А2&В1&С1&С2&СЗ &С4&С5, требующих соответственно решений R2, КЗ, R4, R5, привели к трассировке нейросети, представленной на рис. 4.1. Здесь выделенные связи обладают максимальным значением веса (единичным). Нейросеть получена с помощью алгоритма трассировки, изложенного выше. Матрица следования S, соответствующая получившейся сети, показана на рис. 4.2.

Указанную нейросеть весьма утяжеляют дополнительные связи. Обучение всем обобщенным эталонам сразу (см. разд. 3) выявляет термы, использующиеся при получении различных решений. Здесь же термы не складывались, нейроны почти не использовались повторно. Это и привело к формированию большого числа дополнительных связей.

СТРАТЕГИИ ОБУЧЕНИЯ И САМООБУЧЕНИЯ 2





- Начало -  - Назад -  - Вперед -