Стратегии обучения и самообучения


На самом деле обучение не бывает внезапным, как мы это представили выше, рассматривая сразу обобщенные эталоны.

Можно учить по «чистым» эталонам, объединив их в обобщенные, но реально используются «частные» эталоны, приводящие к одному решению. Например, последовательно применяют эталоны В1&А1&С2, В1&A1&С1 и т.д. и получают решение R1. Можно предъявлять вперемежку разные эталоны, формируя одновременно разные решения.

Например, дядя Рамзай не мог ранее предвидеть некоторых комбинаций событий, предварительно имея ошибочное суждение о распределении работ своих клиентов. Ему даже пришлось употребить свои связи для того, чтобы осуществить вожделенную мечту: включить в орбиту своих действий восхитительную высоко прибыльную продукцию фирмы Ночная бабочка}.

Во всех случаях на этапе обучения целесообразно определять события А, В, С с максимальной достоверностью, равной единице, рассчитывая тем самым реакцию нейросети на вполне определенные ситуации. Ведь даже малая вероятность события, приводящая в рабочем режиме к малой величине возбуждения нейрона входного слоя, указывает на то, что событие возможно и, следовательно, нуждается в рассмотрении и выработке решения. Технология трассировки — «прокладывания» опорных путей в сети также предполагает максимальную достоверность событий.

Сеть, очевидно, должна эволюционировать  пополняться и развиваться. Лишь на этой основе можно в дальнейшем ставить вопрос не только об обучении с учителем, но и о самообучении.

Таким образом, мы не сразу предъявляем сети, например, весь обобщенный эталон А1&В1&С1&С2&СЗ&С4&С5, приводящий к решению R1, а последовательно используем частные эталоны как единичные значения соответствующих булевых переменных или целых. Возможно, мы не все эталоны даже можем перебрать практически. Например, спустя год после успешной деятельности компании, Петя впервые направился к Марине, торгующей тибетским бальзамом. Анализ этой ситуации потребовал трассировки решения А2&ВЗ&СЗ СТРАТЕГИИ ОБУЧЕНИЯ И САМООБУЧЕНИЯ R4.

Конечно, проще всего по вновь появившимся частным эталонам сформировать новые обобщенные эталоны и, отвергнув все ранее проведенное обучение (положив все веса связей в нейросети равными нулю), вновь произвести обучение по всему множеству обобщенных эталонов, включая уточненные. Однако это противоречит динамике совокупного процесса обучения и распознавания, непрерывному участию сети в системе управления, увеличению трудоемкости обучения. Обучение должно быть столь же оперативным и динамичным, как и распознавание.

Другой путь учета новых эталонов заключается в "обнулении" или минимизации лишь тех весов связей, которые обусловлены предыдущим значением обобщенного эталона, приводящего к тому же решению. В результате использованные ранее нейроны выводятся в ресурс. Затем трассировка выполняется заново по уточненному обобщенному эталону, что гораздо короче, если не учитывать временных затрат на ликвидацию следов присутствия устаревшего обобщенного эталона.





- Начало -  - Назад -  - Вперед -