Формализация нейросети


Тактирование работы сети, столь характерное для каждой управляющей системы, отслеживающей ее состояние в дискретные моменты времени, определяет потактовое продвижение по ней волны возбуждений от входного слоя к выходному. Волна за волной возбуждения имитируют систолическую схему вычислений

— параллельный конвейер обработки отдельных кадров, соответствующих конфигурации возбуждений входного слоя в одном такте.

На практике широко исследуются многослойные сети типа персептрон, где отсутствуют обратные связи и возможны связи между нейронами только смежных слоев. В данном разделе мы также не рассматриваем обратные связи, но снимаем ограничение на «слоистость» нейросети, что обеспечивает более общий подход. Именно такая нейросеть, допускающая связи «через слой», была построена в приведенном выше примере. Для таких сетей значительно упрощаются следующие построения.

Нейронную сеть можно изучать статически, исследуя ее структуру, и динамически, анализируя прохождение возбуждений.

Статические исследования нейросети показывают, что она представляет собой ориентированный граф G без контуров. Вершины его соответствуют нейронам, дуги — синапсическим связям. Целесообразно такой, высший, уровень представления отделить от более глубокого описания каждого нейрона и связей между ними, отображающего динамику проходящих процессов, т.е. расчет значения возбуждения нейронов в зависимости от весов синапсических связей и порогов.

Граф малопригоден для формальных исследований и компьютерных алгоритмов. Удобнее пользоваться матричным отображением нейросети. Данным способом представления можно отобразить как структуру, конфигурацию, топологию графа, так и численные значения характеристик его синапсических связей.

Составим матрицу следования S (рис.2.8), число строк (и столбцов) которой равно числу нейронов сети, включая нейроны входного и выходного слоя. Каждая строка (и столбец с тем же номером) соответствует одному нейрону. Для удобства установления порядка следования нейронов диагональные элементы матрицы отмечены черным.

 

Элемент Формализация нейросети  этой матрицы  суть непустой объект, содержащий вес Формализация нейросети  синапсической Формализация нейросети i, если такая связь существует. В то же время элементы матрицы S следует интерпретировать как булевы переменные, равные 1 в случае ненулевого значения указанного веса. Это разрешает выполнение логических операций над строками и столбцами матрицы S, рассматривая ее как аналогичную матрицу следования, используемую при описании частично упорядоченных множеств работ в параллельном программировании .

Матрицу S можно изучать в статическом режиме, исследуя и корректируя возможные пути прохождения возбуждений. По этой же матрице в динамическом режиме (моделирования) можно исследовать действительные пути прохождения возбуждений. Такое исследование связано с потактовым расчетом величин возбуждения нейронов.

Нулевые строки (входы) матрицы S соответствуют нейронам входного слоя  рецепторам, нулевые столбцы (выходы)  нейронам выходного слоя.





- Начало -  - Назад -  - Вперед -