Как же добиться доступности изложения? Один путь уже указан: использование простых принципов схемотехники. Другой путь — в применении методов распараллеливания обработки информации, присущих такой универсальной нейронной сети, какой является мозг. Однако параллельные вычислительные процессы «обладают» теорией, несложными методами расчета и организации, известными специалистам. Представляется логичным приложение простейших методов и концепции распараллеливания к такой же параллельной системе, как нейросеть.
Подобный подход оказался плодотворным и, в частности, привел к простым и уже знакомым аудитории алгоритмам обучения нейросети, позволяющим полностью устранить взаимное влияние эталонов, по которым производится обучение.
И наконец, основной способ достижения доступности изложения состоит в строгом следовании идеям искусственного интеллекта, воспроизводящим работу мозга. Именно в этом случае нейросети обеспечивают простое и естественное решение тех проблем, о которых заявлено в названии книги.
Мозг умеет все, и, что очень важно, логика его работы весьма проста. Она использует связи «если то», «посылка следствие». Более того, это основные отношения, складывающиеся на этапе обучения в незримые таблицы. В свою очередь, основной вопрос: «На что более всего похож предъявляемый образ и что из этого следует?», в то же время является основной функцией обучения нейросети, воспроизводящей работу мозга и ассоциативное мышление. И мы уже видим, как с помощью такого принципа решаются представленные здесь задачи.
Защищая принципы искусственного интеллекта и нейросетевые технологии, спросим читателя, много ли он считает, т.е. оперирует с числами, в своей обыденной жизни? Как находит угол поворотарулевого колеса, чтобы удержать автомобиль на дороге? Как выбирает значения массы параметров, чтобы попасть мячом в баскетбольную корзину? Как вообще он передвигается по дороге, не спотыкаясь о бугорки и обходя лужицы?
Интерполируя по тем самым незримым таблицам, реализованным и развиваемым в нейронной сети нашего мозга, мы можем безбедно прожить жизнь, не ставя перед собой тяжелых творческих задач. И только взаимодействие таких таблиц, содержащихся в них отношений (в совокупности с образной памятью), позволяет строить логические цепочки, называемые умозаключениями.
Книга содержит девять разделов. В разд. 1 обсуждаются проблемы построения и применения нейронных сетей. В разд. 2 строится обученная нейросеть на основе «схемотехнического» подхода. В разд. 3 приводятся пример и формальный алгоритм обучения нейронной сети методом трассировки. В разд. 4 исследуется проблема динамического, постепенного обучения нейросети в процессе ее эксплуатации. В разд. 5 рассматривается построение нейронных сетей с обратными связями. Разд. 6 посвящен построению самообучающихся систем управления. В разд. 7 представлена нейросетевая реализация АЛГОЛпрограммы. В разд. 8 аппарат «карт Кохонена», реализуется на универсальной нейросети, позволяющей значительно увеличить число рассматриваемых факторов. Разд. 9 посвящен перспективе применения нейросетевых технологий в сфере обеспечения безопасности, в системах защиты информации, при управлении следованием поездов и др.
Книга рассчитана на любознательных, предприимчивых компьютерщиков и программистов, желающих найти область приложения своим интересам для личных успехов в Computer Art Studio в науке, экономике и бизнесе, а также в индустрии развлечений и зрелищ.