Одиночная длинная позиция по опциону и оптимальное f 4





Необходимо отметить, что форма распределения, используемого для Р(Т, U), не обязательно должна быть такой же, как и в модели ценообразования, применяемой для определения значений Z(T, U - Y). Например, вы используете модель фондовых опционов Блэка-Шоулса для определения значений Z(T, U - Y). Эта модель предполагает логарифмически нормальное распределение изменений цены, однако для определения соответствующего Р(Т, U) вы можете использовать другую форму распределения.
Шаг 7. Теперь мы можем начать поиск оптимального f с помощью метода итераций, перебирая все возможные значения f между 0 и 1, или с помощью метода параболической интерполяции, или любого другого одномерного алгоритма поиска. Подставляя тестируемые значения f в HPR (у вас уже есть HPR для каждого из возможных приращений цены между + 3 и - 3 стандартными отклонениями на дату истечения срока или указанную дату выхода), вы можете найти среднее геометрическое для данного тестируемого значения f. Для этого надо перемножить все HPR, и полученное произведение возвести в степень единицы, деленной на сумма вероятностей:



где G(f, T) = среднее геометрическое HPR для данного тестируемого значения f;
f = тестируемое значение f;
S = текущая цена опциона;
Z(T, U - Y) = теоретическая цена опциона, когда цена базового инструмента равна U - Y, а время, оставшееся до срока истечения, равно Т. Эту цену можно определить с помощью любой модели ценообразования, которую пользователь посчитает подходящей;
Р(Т, U) = вероятность того, что базовый инструмент равен U, когда время, оставшееся до истечения срока исполнения, равно Т. Это значение можно определить из любой формы распределения, которую пользователь посчитает подходящей;
Y = разность между арифметическим математическим ожиданием базового инструмента (согласно уравнению (5.10)) и текущей ценой.
Значение f, которое в результате даст наибольшее среднее геометрическое, является оптимальным.
Мы можем оптимизировать f, определив оптимальную дату выхода. Другими словами, мы можем найти значение оптимального f для данного опциона на каждый день между текущим днем и днем истечения. Запишем оптимальные f и средние геометрические для каждой указанной даты выхода. Когда мы завершим эту процедуру, мы сможем найти ту дату выхода, которая даст наивысшее среднее геометрическое. Таким образом, мы получим день, когда должны выйти из позиции по опциону для того, чтобы математическое ожидание было наивысшим (т.е. среднее геометрическое было наивысшим). Мы также узнаем, какое оптимальное количество контрактов следует купить.
Теперь у нас есть математический метод, с помощью которого можно выходить из позиции по опциону и покупать опцион при положительном математическом ожидании. Если мы выйдем из позиции в день, когда среднее геометрическое максимально и оно больше 1,0, то следует покупать число контрактов, исходя из оптимального f, которое соответствует наивысшему среднему геометрическому.
Математическое ожидание, о котором мы говорим, — это геометрическое ожидание. Другими словами, среднее геометрическое (минус 1,0) является математическим ожиданием, когда вы реинвестируете прибыли (арифметическое положительное математическое ожидание будет, конечно же, выше, чем геометрическое).
После того как вы найдете оптимальное f для данного опциона, можно преобразовать полученное значение в число контрактов, которое следует покупать:
(5.19) K=INT(E/(S/f)),
где К = оптимальное число опционных контрактов для покупки;
f= значение оптимального Г(от 0 до 1);
S = текущая цена опциона;
Е = общий баланс счета;
1NT() = функция целой части.
Для расчета TWR следует знать, сколько раз мы хотели бы воспроизвести эту же сделку в будущем. Другими словами, если наше среднее геометрическое составляет 1,001 и необходимо найти TWR, которое соответствует этой же игре 100 раз подряд, то TWR будет 1,001^100 = 1,105115698. Поэтому можно ожидать заработка в 10,5115698%, если провести эту сделку 100 раз. Формула для преобразования среднего геометрического в TWR задается уравнением (4.18):
(4.18) TWR = Среднее геометрическое ^ X,
где TWR = относительный конечный капитал;
Х = число раз, которое мы «повторяем» эту игру.


- Начало - - Вперед -