Создание характеристической функции распределения 5





Для этой функции нам необходимо добавить коэффициент асимметрии, третий момент распределения. Характеристическая функция тогда будет выглядеть следующим образом:



Y = ордината характеристической функции;
Х= количество стандартных отклонений;
LOC= переменная, задающая расположение среднего значения, первый момент распределения;
KURT = переменная, задающая эксцесс,
четвертый момент распределения;
SCALE = переменная, задающая ширину, второй момент распределения;
SKEW= переменная, задающая асимметрию, третий момент распределения;
sign() = функция знака, число 1 или -1. Знак Х рассчитывается как X/ ABS(X)
для X, не равного 0. Если Х равно нулю, знак будет считаться положительным;
Рисунки 4-8 и 4-9 показывают действие переменной асимметрии на распределение.
Отметим несколько важных особенностей параметров LOC, SCALE, SKEW и KURT. За исключением переменной LOC (которая выражена как число стандартных значений для смещения распределения), другие три



Рисунок 4-6 LOC=0, SCALE =0,5, SKEW = 0, KURT=2

- Начало - - Вперед -