Моменты распределения 2





Уравнение (3.06) дает нам совокупное среднее абсолютное отклонение. Вам следует знать, что можно рассчитать среднее абсолютное отклонение по выборке. Для расчета среднего абсолютного отклонения выборки замените 1 / N в уравнении (3.06) на 1 / (N - 1). Используйте эту версию, когда расчеты ведутся не по всей совокупности данных, а по некоторой выборке.
Самыми распространенными величинами для измерения разброса являются дисперсия и стандартное отклонение. Как и в случае со средним абсолютным отклонением, их можно рассчитать для всей совокупности и для выборки. Далее показана версия для всей совокупности данных, которую можно легко переделать в выборочную версию, заменив l/NHal/(N-l). Дисперсия (variance) чем-то напоминает среднее абсолютное отклонение, но при расчете дисперсии каждая разность значения точки данных и среднего значения возводится в квадрат. В результате, нам не надо брать абсолютное значение каждой разности, так как мы автоматически получаем положительный результат, независимо от того, была эта разность отрицательной или положительной. Кроме того, так как в квадрат возводится каждая из этих величин, крайние выпадающие значения оказывают большее влияние на дисперсию, а не на среднее абсолютное отклонение. В математических терминах:



где V = дисперсия;
N = общее число точек данных;
X. = значение, соответствующее точке i;
А = среднее арифметическое значений точек данных.

Стандартное отклонение (standard deviation) тесно связано с дисперсией (и, следовательно, со средним абсолютным отклонением). Стандартное отклонение является квадратным корнем дисперсии.
Третий момент распределения называется асимметрией (skewness), и он описывает асимметричность распределения относительно среднего значения (рисунок 3-2). В то время как первые два момента распределения имеют размерные величины (то есть те же единицы измерения, что и измеряемые параметры), асимметрия определяется таким способом, что получается безразмерной. Это просто число, которое описывает форму распределения.
Положительное значение асимметрии означает, что хвосты больше с положительной стороны распределения, и наоборот. Совершенно симметричное распределение имеет нулевую асимметрию.



Рисунок 3-2 Асимметрия


- Начало - - Вперед -