Величины, описывающие распределения 2





Мы увидели, что медиана делит распределение на две равные части. Таким же образом распределение можно разделить тремя квартилями (quartiles), чтобы получить четыре области равного размера или вероятности, или девятью децилями (deciles), чтобы получить десять областей равного размера или вероятности, или 99 перцентилями (percentiles) (чтобы получить 100 областей равного размера или вероятности), 50-й перцентиль является медианой и вместе с 25-м и 75-м перцентилями дает нам квартили. И наконец, еще один термин, с которым вы должны познакомиться, — это квантиль (quantile). Квантиль — это некоторое число N-1, которое делит общее поле данных на N равных частей. Теперь вернемся к среднему. Мы обсудили среднее арифметическое, которое измеряет центральную тенденцию распределения. Есть и другие виды средних, они реже встречаются, но в определенных случаях также могут оказаться предпочтительнее. Одно из них — это среднее геометрическое (geometric mean), расчет которого дан в первой главе.
Среднее геометрическое является корнем степени N из произведения значений, соответствующих точкам распределения.



где G = среднее геометрическое;
Х = значение, соответствующее точке i;
N = общее число точек данных в распределении.

Среднее геометрическое не может быть рассчитано, если хотя бы одна из переменных меньше или равна нулю.
Мы знаем, что арифметическое математическое ожидание является средним арифметическим результатом каждой игры (на основе 1 единицы) минус размер ставки. Таким же образом можно сказать, что геометрическое математическое ожидание является средним геометрическим результатом каждой игры (на основе 1 единицы) минус размер ставки.
Еще одним видом среднего является среднее гармоническое (harmonic mean).
Это обратное значение от среднего обратных значений точек данных.



где Н = среднее гармоническое;
Х = значение, соответствующее точке i;
N = общее число точек данных в распределении.



- Начало - - Вперед -