Рекламная рассылка viber rebiv.by.              

  d9e5a92d

Нормальное и логнормальное распределение



Нормальным называют распределение вероятностей непрерывной случайной величины, которое описывается плотностью


Нормальное распределение определяется двумя параметрами: математическим ожиданием и на графике представляет собой симметричную колоколообразную кривую Гаусса, имеющую максимум в точке, соответствующей значению и от центра распределения. Изменение параметра кривая вытягивается в центре и быстрее приближается к оси абсцисс при удалении от центра.

Часто вместо случайной величины Х целесообразно рассматривать нормированную случайную величину . Нормированная величина имеет математическое ожидание, равное нулю и дисперсию, равную единице. При а=0 и

Ее уравнение:


Между абсциссами расположено 68,27% всей площади кривой нормального распределения. Это означает, что 68,27% всех измеренных единиц отклоняется от среднего значения не более чем на. Площадь, заключенная между ординатами, проведенными на расстоянии . И наконец, 0,9973 или 99,73% всех единиц находятся в пределах находится не более 0,27% всех значений величин, иными словами, 27 реализаций на 10 тыс. испытаний. Исходя из принципа невозможности маловероятных событий такие события можно считать практически невозможными. На практике правило трех сигм применяют так: если распределение изучаемой случайной величины неизвестно, но условие, указанное в приведенном правиле, выполняется, то есть основание предполагать, что изучаемая величина распределена нормально; в противном случае она не распределена нормально.


Содержание Вперед