Одной из проблем, с которой сталкиваются почти всегда при проведении системного анализа, является проблема эксперимента в системе или над системой. Очень редко это разрешено моральными законами или законами безопасности, но сплошь и рядом связано с материальными затратами и (или) значительными потерями информации.
Опыт всей человеческой деятельности учит — в таких ситуациях надо экспериментировать не над объектом, интересующим нас предметом или системой, а над их моделями. Под этим термином надо понимать не обязательно модель физическую, т. е. копию объекта в уменьшенном или увеличенном виде. Физическое моделирование очень редко применимо в системах, хоть как то связанных с людьми. В частности в социальных системах (в том числе — экономических) приходится прибегать к математическому моделированию.
Буквально через минуту станет ясно, что математическим моделированием мы овладеваем еще на школьной скамье. В самом деле, пусть требуется найти площадь прямоугольника со сторонами 2 и 8 метров. Измерение сторон произведено приближенно — других измерений расстояний не бывает! Как решить эту задачу? Конечно же — не путем рисования прямоугольника (даже в уменьшенном масштабе) и последующем разбиении его на квадратики с окончательным подсчетом их числа. Да, безусловно, мы знаем формулу
S = B·H
и воспользуемся ею — применим математическую модель процесса определения площади.
Возвращаясь к начатому ранее примеру системного анализа обучения, можно заметить, что там собственно нечего вычислять по фор-мулам — где же их взять. Это так и есть, не существует методов расчета в такой сфере как “прием-передача” знаний и сомнительно, чтобы эти методы когда-либо появились.
Но ведь не существует формулы пищеварения, а люди все таки едят, планируют процесс питания, управляют им и иногда даже успешно.....
Так что же? Если нет математических моделей — не выдумывать же их самому? Ответ на этот вопрос самый простой: всем это уметь и делать — не обязательно, а вот тому, кто взялся решать задачи системного анализа — приходится и очень часто. Иногда здесь возможна подсказка природы, знание технологии системы; в ряде случаев может выручить эксперимент над реальной системой или ее элементами (т. н. методы планирования экспериментов) и, наконец, иногда приходится прибегать к методу “черного ящика”, предполагая некоторую статистическую связь между его входом и выходом.
Таким “ящиком” в рассматриваемом примере считался не только студент (с вероятностью такой-то получивший знания), но и все остальные элементы системы — преподаватели и лица, организующие обучение.
Конечно, возможны ситуации, когда все процессы в большой системе описываются известными законами природы и когда можно надеяться, что запись уравнений этих законов даст нам математическую модель хотя бы отдельных элементов или подсистем. Но и в этих, редких, случаях возникают проблемы не только в плане сложности урав-нений, невозможности их аналитического решения (расчета по формулам). Дело в том, что в природе трудно обнаружить примеры “чистого” проявления ее отдельных законов — чаще всего сопутствующие явление факторы “смазывают” теоретическую картину.
Еще одно важное обстоятельство приходится учитывать при математическом моделировании. Стремление к простым, элементарным моделям и вызванное этим игнорирование ряда факторов может сделать модель неадекватной реальному объекту, грубо говоря — сделать ее неправдивой. Снова таки, без активного взаимодействия с технологами, специалистами в области законов функционирования систем данного типа, при системном анализе не обойтись.
В системах экономических, представляющих для вас основной интерес, приходится прибегать большей частью к математическому моделированию, правда в специфическом виде — с использованием не только количественных, но и качественных, а также логических показателей.
Из хорошо себя зарекомендовавших на практике можно упомянуть модели: межотраслевого баланса; роста; планирования экономики; прогностические; равновесия и ряд других.
Завершая вопрос о моделировании при выполнении системного анализа, резонно поставить вопрос о соответствии используемых моделей реальности.
Это соответствие или адекватность могут быть очевидными или даже экспериментально проверенными для отдельных элементов системы. Но уже для подсистем, а тем более системы в целом существует возможность серьезной методической ошибки, связанная с объективной невозможность оценить адекватность модели большой системы на логическом уровне.
Иными словами — в реальных системах вполне возможно логическое обоснование моделей элементов. Эти модели мы как раз и стремимся строить минимально достаточными, простыми настолько, насколько это возможно без потери сущности процессов. Но логически осмыслить взаимодействие десятков, сотен элементов человек уже не в состоянии. И именно здесь может “сработать” известное в математике следствие из знаменитой теоремы Гёделя — в сложной системе, полностью изолированной от внешнего мира, могут существовать истины, положения, выводы вполне “допустимые” с позиций самой системы, но не имеющие никакого смысла вне этой системы.
То есть, можно построить логически безупречную модель реальной системы с использованием моделей элементов и производить анализ такой модели. Выводы этого анализа будут справедливы для каждого элемента, но ведь система — это не простая сумма элементов, и ее свойства не просто сумма свойств элементов.
Отсюда следует вывод — без учета внешней среды выводы о поведении системы, полученные на основе моделирования, могут быть вполне обоснованными при взгляде изнутри системы. Но не исключена и ситуация, когда эти выводы не имеют никакого отношения к системе — при взгляде на нее со стороны внешнего мира.
Для пояснения вернемся к рассмотренному ранее примеру. В нем почти все элементы были построены на вполне оправданных логических постулатах (допущениях) типа: если студент Иванов получил оценку “знает” по некоторому предмету, и посетил все занятия по этому предмету, и управление его обучением было на уровне “Да” — то вероятность получения им оценки “знает” будет выше, чем при отсутствии хотя бы одного из этих условий.
Но как на основании системного анализа такой модели ответить на простейший вопрос; каков вклад (хотя бы по шкале “больше-меньше”) каждой из подсистем в полученные фактические результаты сессии? А если есть числовые описания этих вкладов, то каково доверие к ним? Ведь управляющие воздействия на систему обучения часто можно производить только через семестр или год.
Здесь приходит на помощь особый способ моделирования — метод статистических испытаний (Монте Карло). Суть этого метода проста — имитируется достаточно долгая “жизнь” модели, несколько сотен семестров для нашего примера. При этом моделируются и регистрируются случайно меняющиеся внешние (входные) воздействия на систему. Для каждой из ситуации по уравнениям модели просчитываются выходные (системные) показатели. Затем производится обратный расчет — по заданным выходным показателям производится расчет входных. Конечно, никаких совпадений мы не должны ожидать — каждый элемент системы при входе “Да” вовсе не обязательно будет “Да” на выходе.
Но существующие современные методы математической статистики позволяют ответить на вопрос — а можно ли и, с каким доверием, использовать данные моделирования. Если эти показатели доверия для нас достаточны, мы можем использовать модель для ответа на поставленные выше вопросы.
Содержание раздела