Линейная регрессия



В тех случаях, когда из природы процессов в системе или из данных наблюдений над ней следует вывод о нормальном законе распределения двух СВ - Y и X, из которых одна является независимой, т. е. Y является функцией X, то возникает соблазн определить такую зависимость “формульно”, аналитически.
В случае успеха нам будет намного проще вести системный анализ — особенно для элементов системы типа "вход-выход”. Конечно, наиболее заманчивой является перспектива линейной зависимости типа

Y = a + b·X .

Подобная задача носит название задачи регрессионного анализа и предполагает следующий способ решения.
Выдвигается следующая гипотеза:
H0: случайная величина Y при фиксированном значении величины X распределена нормально с математическим ожиданием

My = a + b·X и дисперсией Dy, не зависящей от X. {2 - 14}

При наличии результатов наблюдений над парами Xi и Yi предварительно вычисляются средние значения My и Mx, а затем производится оценка коэффициента b в виде

b = = Rxy {2 - 15}

что следует из определения коэффициента корреляции {2 - 11}.
После этого вычисляется оценка для a в виде

a = My - bMX {2 - 16}

и производится проверка значимости полученных результатов. Таким образом, регрессионный анализ является мощным, хотя и далеко не всегда допустимым расширением корреляционного анализа, решая всё ту же задачу оценки связей в сложной системе.

- Начало - - Вперед -