Подпись: соотношение сигнал/шум для всех методов, при котором еще возможно обнаружить составляющие сигнала, а также графики, иллюстрирующие результаты исследования.

Приложение F включает в себя получение и исследование дисперсии оценок СПМ как функции частоты.

Выбор правильных параметров в методах, функционирующих в реальном масштабе времени сопряжен со значительными трудностями. С одной стороны, если рассматривать градиентный адаптивный авторегрессионный метод, выбор большего параметра адаптации приводит к улучшению разрешающей способности и к увеличению «достоверности» спектра, с другой стороны это приводит к возрастанию структурной неустойчивости всей вычислительной схемы, а на больших порядках модели, вообще, к разрушению алгоритма. В эксперименте с аудио сигналом для каждого представления отсчетов (под представлением понимается следующий набор установок : частота дискретизации из диапазона 8 Кгц. - 44 Кгц., количество каналов - 1 (моно)/ 2(стерео), количество битов на отсчет 8 бит/16 бит ) и для каждого набора параметров схемы, осуществляющей сбор данных в реальном масштабе времени (количество (значения из диапазона : 3,...,128) и длина буферных областей задержек данных на входе и выходе (значения из диапазона : 256,...,16384 отчета)) было выбрано компромиссное решение. Результаты приведены в приложении G. 

Поскольку наилучшее значение порядка фильтра в авторегрессионной модели, как правило, не известно, на практике приходится испытывать несколько порядков моделей. Базируясь на этом, вводят тот или иной критерий ошибки, по которому затем определяем требуемый порядок модели. Если порядок модели выбран слишком малым, получаются сильно сглаженные спектральные оценки, если излишне большим - увеличивается разрешение, но в оценке появляются ложные спектральные пики. Таким образом, применительно к авторегрессионному спектральному оцениванию выбор порядка моделей эквивалентен компромиссу между разрешением и величиной дисперсии для классических методов спектрального оценивания. Очевидно, что следует увеличивать порядок АР-модели до тех пор, пока вычисляемая ошибка предсказания не достигнет минимума. Однако во всех исследованных методах оценка дисперсии монотонно уменьшается с увеличением порядка модели. Следовательно, одной дисперсии 
спектральный анализПодпись:

Экспериментальный анализ алгоритмов спектрального анализа 3




  
    

  

спектральный анализспектральный анализПодпись: Начало Дальше