Теперь нетрудно заметить изоморфизм данного закона закону системы химических элементов, установленному в 1869 г. Д. И. Менделеевым и уточненному в 1913 г. Ван дер Бруком и Г. Мозли. Согласно этому закону, свойства химических элементов находятся в периодической зависимости от числа положительных зарядов их атомных ядер Z, совпадающего с номером клетки в системе.
Как видно, оба периодических закона (химических элементов и циклических венчиков) в принципе одинаковы. Они лишь две различные реализации одного и того же абстрактного закона дискретной периодической системы Sp, согласно которому P1, Р2, Р3, … , Pк свойства объектов-систем системы Sp находятся в периодической зависимости от N, совпадающего с номером клетки в Sp системе.
В результате мы подходим к идее системы объектов одного и того же типа, например периодического, генеалогического, сетчатого, иерархического и т.д. Приведенные системы (венчиков растений и химических элементов), а также системы кристаллографических индексов [75], метаболических путей [47], структуры фауны и флоры в связи с размерами организмов [107], кариотипов цветковых растений [16] представляют собой конкретную реализацию системы одного и того же типа периодического (прерывного или непрерывного).
С точки зрения ОТС множество есть система, построенная лишь по основанию А(0) из заранее заданных элементов. Между тем система конструируется в одних случаях только из заранее заданных элементов в виде множества {М(0)}; в других, более общих случаях как из заранее заданных элементов, так и тех композиций, которые составляются по закону Z из множества «первичных» элементов {М(0)}. Следовательно, теоретикo-множественный подход является частным случаем системного подхода и было бы неправильным противопоставлять их.
Другими словами, ОТС включает в себя теорию множеств и не может быть сведена к ней, в чем мы согласны с Ю. А. Шрейдером.
Итак, мы выявили и определили основные понятия ОТС («объект-система», «система объектов одного и того же рода», «абстрактная система»). Теперь, исходя из определения разного рода систем, мы разовьем систему предложений ОТС и дадим выводы законов преобразования объектов-систем.
5. Основной закон ОТС
Предложение 3. Существуют лишь четыре основных преобразования объекта-системы в рамках системы объектов одного и того же рода, именно: тождественное, количественное, качественное, относительное, или, что то же, преобразования в себя, количест-иа, качества, отношений «первичных» элементов.
Докажем это утверждение. Объект-система уже в силу своего существования либо покоится, либо изменяется. В первом случае благодаря тождественному преобразованию он непрерывно переходит в себя, во втором в объекты-системы качественно одинакового (одного и того же) или разных родов.
Очевидно, рассматривая преобразования объектов-систем в рамках системы объектов одного и того же рода, мы уже по одному этому условию обязаны считать законы композиции z {Zi}, при таких переходах неизменными. Однако при фиксированном {Zi} в объекте-системе по определению нельзя изменить ничего другого, кроме количества, качества, отношений единства «первичных» элементов. В результате мы приходим лишь к четырем преобразованиям: тождественному (в случае перехода объекта-системы в себя), количественному, качественному, относительному (для случаев превращения его в другие объекты-системы).
Пример тождественного преобразования: сон сон. В этом случае количество, качество, отношения букв не изменяются.
+ м
Примеры количественных преобразований: сон сонм.
м
В этом случае ни качество, ни отношения (линейный порядок и качество букв) не изменяются.
Примеры качественных преобразований (букв друг в друга)
Предполагается возможность отождествления этих равностронних треугольников и букв их вершин посредством различных поворотов в пространстве. При таких условиях качественное преобразование букв и треугольника ТОМ в треугольник ОМТ и наоборот не изменяет ни количества, ни отношений его «первичных» элементов (сторон, букв, углов).
Примеры относительных преобразований (перестановок): ТОМ МОТ. Количество и качество букв при этих перестановках не изменяются.
Из четырех основных преобразований сочетанием их по 1, по 2, по 3, по 4 можно получить 4 основных и 11 производных преобразований (всего 15) (см. табл. 1). При этом полнота перебора в табл. 1 всех вариантов преобразований доказывается про-
стой констатацией того, что С4i, = 241 = 15.
i=1
При сопоставлении 2-го преобразования с 9-м, 3-го с 10-м, ..., 8-го с 15-м нетрудно заметить несущественные, чисто количественные отличия их друг от друга. Если мы учтем принципиальную тождественность преобразований 28 соответствующим им преобразованиям 915 и одновременно не упустим из виду количественного их аспекта, то придем к фундаментальному обобщению, с которым связаны все предложения ОТС (поэтому оно названо центральным).
Таблица 1. Список основных и производных преобразований объекта-системы в рамках системы объектов данного рода
Виды преобразований*
|
||
1 Т 2 Кл 3 Кч 4 О 5 - КлКч |
6 КлО 7 КчО 8 КлКчО 9 ТКл 10 - ТКч |
11 ТО 12 ТКлКч 13 ТклО 14 ТкчО 15 - ТКлКчО |
* Т тождественное, Кл количественное, Кч качественное, О относительное преобразование.
Центральное предложение ОТС основной закон системных преобразований объекта-системы: объект-система в рамках системы объектов одного и того же рода благодаря своему существованию переходит по законам z {Zi} : А) либо в себя посредством тождественного преобразования, Б) либо в другие объекты-системы посредством одного из семи, и только семи, различных преобразований, именно изменений: 1) количества, 2) качества, 3) отношений, 4) количества и качества, 5) количества и отношений, 6) качества и отношений, 7) количества, качества, отношений всех или части его «первичных» элементов.