Любая СЧМ призвана удовлетворять те или иные потребности человека и общества. Для этого она должна обладать определенными свойствами, которые закладываются при проектировании СЧМ и реализуются в процессе эксплуатации.
Под свойством СЧМ понимается ее объективная способность (особенность), проявляющаяся в процессе эксплуатации. Количественная характеристика того или иного свойства системы, рассматриваемого применительно к определенным условиям ее создания или эксплуатации, носит название показателя качества СЧМ.
В нашей стране разработана определенная номенклатура показателей качества промышленной продукции. Она включает в себя 8 групп показателей, с помощью которых можно количественно оценивать различные свойства продукции.
К ним относятся: показатели назначения, надежности и долговечности, технологичности, стандартизации и унификации, а также эргономический, эстетический, патентно-правовой, экологический и экономический показатели.
Не рассматривая подробно все показатели (это не является задачей инженерной психологии), остановимся лишь на тех из них, которые влияют на деятельность человека в СЧМ или зависят от результатов его деятельности.
Быстродействие (время цикла регулирования) определяется временем прохождения информации по замкнутому контуру человек-машина:
Tц =
k |
∑ |
i = 1 |
mош |
N |
В качестве исходного понятия для определения обеих характеристик используется понятие ошибка оператора, для расчета обеих характеристик предлагаются одинаковые формулы и т.д. Фактически же
надежность и точность представляют собой различные показатели, характеризующие разные стороны деятельности оператора. Правильное толкование обоих этих показателей дается в работе [122].
Под точностью работы оператора следует понимать степень отклонения некоторого параметра, измеряемого, устанавливаемого или регулируемого оператором, от своего истинного, заданного или номинального значения. Количественно точность работы оператора оценивается величиной погрешности, с которой оператор измеряет, устанавливает или регулирует данный параметр:
γ = Iн - Iоп,
где Iн - истинное или номинальное значение параметра; Iоп - фактически измеряемое или регулируемое оператором значение этого параметра.
Величина погрешности может иметь как положительный, так и отрицательный знак. Понятия ошибки и погрешности не тождественны между собой: не всякая погрешность является ошибкой. До тех пор пока величина погрешности не выходит за допустимые пределы, она не является ошибкой, и только в противном случае ее следует считать ошибкой и учитывать также при оценке надежности.
Понятие погрешности наиболее важно для тех случаев, когда измеряемый или регулируемый оператором параметр представляет непрерывную величину. Так, например, можно говорить о точности определения координат самолета оператором радиолокационной станции и т.д.
В работе оператора следует различать случайную и систематическую погрешности. Случайная погрешность оператора оценивается величиной среднеквадратической погрешности, систематическая погрешность - величиной математического ожидания отдельных погрешностей.
Методы их определения приведены в работах [93, 122, 168].
Своевременность решения задачи СЧМ оценивается вероятностью того, что стоящая перед СЧМ задача будет решена за время, не превышающее допустимое:
Pсв = P{Tц ≤ Tдоп} =
Tдоп |
∫ |
0 |
mнс |
N |
n |
∑ |
i = 1 |
Ноп |
НСЧМ |
Это видно из сравнения кривых 1 и 2 на рис. 3.2.
Оптимальная степень автоматизации устанавливается в процессе решения задачи распределения функций между человеком и машиной.
Экономический показатель характеризует полные затраты на систему человек- машина. В общем случае эти затраты складываются из трех составляющих: затрат на создание (изготовление) системы Си, затрат на подготовку операторов Соп и эксплуатационных расходов Сэ.
По отношению к процессу эксплуатации затраты Си и Соп являются, как правило, капитальными. Тогда полные приведенные затраты в СЧМ определяются выражением
WCЧM = Cэ + Eн (Cоп + Cн),(3.8) где Ен - нормативный коэффициент экономической эффективности капитальных затрат.
При заданной величине WCЧM путем перераспределения затрат между отдельными составляющими Си, Соп и Сэ, можно получить различные значения общей эффективности СЧМ. И, наоборот, заданная эффективность СЧМ может быть обеспечена с помощью различных затрат в зависимости от распределения их между отдельными составляющими.
Методы технико-экономической оптимизации СЧМ (получение заданной эффективности при минимуме WCЧM или получение максимума эффективности при заданной величине WCЧM) путем перераспределения затрат Си, Соп и Сэ, рассмотрены в работе [85].
Большое значение при анализе и оценке СЧМ имеют эргономические показатели. Они учитывают совокупность специфических свойств системы человек - машина, обеспечивающих возможность осуществления в ней деятельности человека (группы людей). Эргономические показатели представляют собой иерархическую структуру, включающую в себя целостную эргономическую характеристику (эргономичность СЧМ), комплексные (управляемость, обслуживаемость, освояемость и обитаемость СЧМ), групповые (социально-психологические, психологические, физиологические, антропометрические, гигиенические) и единичные показатели.
Общие методические рекомендации по их определению приведены в работе [215].
С помощью рассмотренных показателей можно оценить одно или несколько однотипных свойств СЧМ. Иногда их может оказаться недостаточно для решения
инженерно-психологических задач (например, при выборе одного из нескольких конкурирующих вариантов СЧМ). В этом случае нужно дать интегральную оценку качества системы человек - машина как совокупности всех ее основных свойств.
Для этого используется понятие эффективности СЧМ, под которой понимается степень приспособленности системы к выполнению возложенных на нее функций. При определении эффективности СЧМ необходимо учесть следующие правила:
При этом следует отметить, что все частные показатели с точки зрения их влияния на эффективность могут быть повышающими (надежность, безопасность, своевременность и т.п.) или понижающими (затраты, время решения задачи и др.). Поэтому нормирование производится следующим образом:
для повышающих показателей
Эi =
Ei |
Emaxi |
Emini |
Ei |
n |
∑ |
i = 1 |
В настоящее время в инженерной психологии, а также в смежных с нею научных дисциплинах и направлениях (эргономика, психология труда и управления, теория эргатических систем, теория надежности и эффективности СЧМ и др.) разработан целый ряд концепций анализа, описания и проектирования систем человек-машина. Эти концепции различаются используемым математическим аппаратом, составом необходимых исходных данных, различными взглядами на роль и место человека в СЧМ. Такое положение является достаточно точным отражением современного уровня развития инженерной психологии, поскольку в зависимости от конкретных условий специалист по инженерной психологии (конструктор, организатор производства, специалист по эксплуатации) может выбрать и использовать ту или иную из существующих концепций. Поэтому представляется целесообразным рассмотреть наиболее конструктивные из возможных концепций (теорий, подходов).
Все они условно делятся на две большие группы: психологические и кибернетические (рис. 3.3).
Наиболее общей из них является концепция, основанная на использовании деятельности о го подхода [55, 56]. С ее позиций категория деятельности выступает как начало, содержание и завершение процессов анализа, организации, проектирования и оценки СЧМ. При
этом категория деятельности выступает в качестве предмета:
В рамках этой концепции разработан микроструктурный подход (от греч. mikros - малый и лат. structura - строение) к анализу деятельности. Сущность микроструктурного подхода состоит в выделении компонентов (единиц анализа), сохраняющих свойства целого, и установлении между ними типов взаимоотношения или координации.
Набор (алфавит) компонентов должен быть достаточно широк для того, чтобы охватить процесс в целом; каждый из компонентов должен обладать не только качественной, но и количественной определенностью.
Микроструктурный подход оперирует понятиями операции, функционального блока, фазы процесса, кванта восприятия или действия. Каждый из компонентов отличается по ряду параметров: место в структуре деятельности, информационная емкость, время выполнения, тип преобразования информации, возможные связи с другими компонентами и средой.
Наиболее распространенный прием микроструктурного подхода состоит в том, что время выполнения работы делится на ряд интервалов и предполагается, что в каждом из них выполняются те или иные преобразования входной информации, осуществляемые определенными функциональными блоками. Микроструктурный подход является возможным прототипом проектирования отдельных функций операторской деятельности [55, 215].
Одной из первых психологических концепций была предложенная в 1967 году Б.Ф. Ломовым концепция проектирования деятельности [цит. по 92].
Суть ее состоит в том, что проект деятельности оператора (и вообще любого работника) должен выступать как основа решения всех остальных задач проектирования СЧМ. Эта концепция базируется на рассмотренных в первой главе методологических принципах (гуманизации труда, активного оператора, комплексности и др.).
Целый ряд задач анализа, описания и проектирования СЧМ может быть решен на основе использования
структурно-психологической концепции [17, 143]. Основной смысл ее состоит в соотнесении структуры технических средств деятельности оператора и психологических факторов сложности (ПФС) выполнения им своих функций, в частности сложности решения оперативных задач.
С позиций данной концепции проектирование технических средств рассматривается как процесс анализа и материализации априорных стратегий решения задач с целью оптимизации ПФС. Их оптимальный уровень достигается путем многоуровневой взаимной адаптации людей и технических средств.
Оптимальными значениями ПФС считаются те, которые обеспечивают достижение цели (решение задачи) при минимальном значении внешнего критерия сложности (времени решения задачи, числа ошибок, показателей психофизической напряженности и др.).
Оптимизация ПФС достигается путем создания системы адаптивного информационного взаимодействия между оператором и ЭВМ, работающей по принципу гибридного интеллекта. Он достигается путем разумного сочетания естественного интеллекта человека и возможностей современных ЭВМ. При этом человек и ЭВМ рассматриваются как равноправные партнеры по информационному взаимодействию.
Оптимизации ПФС способствует также применение трансформационной теории обучения. Согласно ей процесс обучения не носит традиционно используемый характер; на кривой обучения имеются плато (пологие участки), соответствующие переходу на новый, более высокий уровень овладения деятельности.
Последнее одновременно способствует и достижению более оптимальных значений ПФС.
Анализ взаимодействия априорных и реальных стратегий поведения оператора и соответствующих им уровней ПФС позволяет расширить рамки инженерно-психологического проектирования - не только распространить его на предварительный выбор характеристик системы, но и сделать проектирование непрерывным, последовательно решающим задачу оптимизации СЧМ и после реализации предварительного проекта, т.е. в ходе эксплуатации системы [17].
При разработке автоматизированных систем организационного типа (АСУП, ОАСУ и т.п.) весьма плодотворным
оказывается использование концепции психологического обеспечения (ПО) АСУ [141]. Под ним понимается планирование, разработка, организация и реализация комплекса мероприятий по учету психологических факторов на всех этапах создания, внедрения и эксплуатации АСУ.
Согласно этой концепции, любая АСУ рассматривается как сложная социотехническая система, которая не может эффективно функционировать, если она создается и эксплуатируется без учета психологического фактора. Его учет должен осуществляться на всех этапах проектирования, внедрения и эксплуатации АСУ.
Создание АСУ должно начинаться с проектирования оптимальной (рациональной) человеческой деятельности. Важнейшим фактором, обеспечивающим эффективность функционирования разрабатываемой системы, является подготовка персонала АСУ. Она базируется на анализе, проектировании и синтезе (формировании) деятельности. Анализ деятельности осуществляется на этапе предпроектного обследования, а его результатом являются рекомендации на проектирование или совершенствование деятельности персонала АСУ.
Проектирование деятельности осуществляется на этапах технического и рабочего проектирования, а его результатом являются должностные инструкции. Они должны разрабатываться с учетом обеспечения быстрейшей адаптации работника к эффективной деятельности в условиях АСУ. Синтез деятельности включает в себя профессиональный отбор, обучение, выработку индивидуальных и коллективных умений и навыков, а также обеспечение психологической совместимости всего персонала АСУ. Синтез деятельности должен начинаться на этапе технического проектирования и завершаться на этапе внедрения во взаимодействии с проектированием технической части АСУ.
Его конечной целью является обеспечение фактической эффективной деятельности всего персонала АСУ.
При создании автоматизированных систем управления технологическими процессами (АСУТП), деятельность оператора в которых носит сложный мыслительный характер, может быть использована концепция идеализированных структур деятельности [26]. Эта концепция базируется на данных о формализуемых человеком способах организации процесса
контроля и управления объектом на разных уровнях обучения и в разных конкретных условиях. На основе концепции разработаны методы инженерно-психологического анализа и проектирования деятельности оператора АСУТП, базирующиеся на исходных данных о психологической структуре деятельности оператора (включающей сложные виды мыслительных задач), позволяющие свести к минимуму число операций (шагов) решения задач проектирования, ложность исходных данных на разных стадиях создания СЧМ.
Для анализа, описания и проектирования следящих систем может быть использована концепция инженерно-психологического проектирования полуавтоматических систем управления, использующих принцип слежения [173, 201]. Практическая реализация концепции связана с решением ряда проблем:
Реализация концепции потребовала уточнения понятия передаточная функция оператора. Оказалось, что спектр ответных действий оператора содержит кроме требуемого сигнала и спектр дополнительных (малых) движений, необходимых оператору для познания и контроля процесса управления и названных дельта-ремнантой. Малые движения являются одним из показателей психологических особенностей работы оператора в режиме слежения.
Отсутствие формализованного описания свойств этих движений в большинстве математических моделей деятельности и обуславливает их неадекватность. Включение же их в математические модели позволяет учитывать психологические особенности деятельности человека в следящих системах. 103
В результате учета малых движений стало возможным аналитически оценивать долю погрешности, вносимую в ошибку выходного сигнала системы, как от функционирования человека-оператора, так и от разброса параметров любого из элементов технической части системы. Это дает возможность производить синтез системы по заданным требованиям.
При этом учитываются и экономические показатели, что позволяет создавать наиболее экономичные системы человек-машина.
Рассмотренные концепции отличает ярко выраженный их, если так можно выразиться, психологический характер. Они базируются на знании и учете психологических характеристик и свойств человека, а основу этих концепций составляет прежде всего проектирование деятельности оператора в системе человек-машина.
Помимо них существует еще ряд концепций, в основе которых лежит кибернетический подход к анализу и проектированию СЧМ.
Одна из таких концепций носит название организмической. Она разработана в рамках теории эргатических систем [53, 131].
В соответствии с организмической концепцией основой оптимальной кооперации человека и машины должны служить принципы организации живого, т.е. организма как феномена целесообразного живого в природе. Концепция основывается на двух основных положениях: 1) организм представляет собой соответствующим образом организованную совокупность функциональных систем (понятие о них дается в главе IV); 2) основные закономерности организации и функционирования каждой системы и всего организма и СЧМ в целом - одни и те же.
Основное смысловое содержание организмического постулата формулируется следующим образом: создание оптимальных СЧМ в функциональном смысле эквивалентно оптимальной достройке организма оператора машинами как орудиями труда.
В рамках концепции предлагается определенная система принципов поведения биосистем. К их числу относятся принципы: активности, гомеостаза, автономности, иерархичности, доминанты, целостности, эволюции.
Подробно они описаны в [53].
Сущность организмической концепции сводится к синтезу эргамата - системы, состоящей из человека и
машины и выполняющей определенную работу действиями человека внутри системы. Поведение эргамата описывается системой дифференциальных уравнений.
Задача синтеза эргамата заключается в определении числа и состава входящих в систему элементов (включая и человека) и их функциональных обязанностей.
Для решения задачи определяются обобщенные рабочие характеристики (ОРХ) оператора. Окончательный вариант структуры эргамата выбирают оптимизацией общецелевой системной функции при выполнении ограничений, накладываемых на соответствующие временные, точностные и надежностные ОРХ.
Концепция нашла применение для расчета и оптимизации непрерывных систем ручного управления, в частности транспортных систем.
К кибернетическому направлению можно отнести и концепцию обеспечения качества функционирования (ОКФ) эргатических систем [102, 214]. Задача обеспечения требуемого уровня качества заключается в оценке (с помощью процедуры контроля) и устранении (путем проведения профилактического обслуживания) причин и условий, которые его снижают (не обеспечивают).
При этом возникает задача по определению, когда и какие мероприятия следует проводить, чтобы получать максимально возможный эффект от применения СЧМ по своему назначению в течение заданного времени ее функционирования.
Последовательность мероприятий по ОКФ эргатических систем следующая. В начальный момент качество функционирования системы соответствует требуемому уровню, т.е. технические звенья и операторы находятся в работоспособном состоянии и готовы к выполнению задания. Через некоторое время необходимо провести контроль параметров функционирования системы (как техники, так и операторов).
Если к этому времени система функционирует безотказно, то следует проводить плановый контроль. Если же возникли отказы, то следует осуществлять профилактические воздействия, которые должны полностью восстановить требуемый уровень качества.