20 лет эволюции программного обеспечения.
Позволив себе рассуждения в стиле Билла Гейтса, предположим, что результатом будет становление систем управления информацией одной из частей повседневной жизни каждого.
История развития компьютерной техники это история непрерывного движения от языка и уровня коммуникации машины к уровню пользователя. Если первые машины требовали от пользователя оформления того, что ему нужно (то есть написания программ), в машинных кодах, то языки программирования четвертого уровня (4GLs) позволяли конечным пользователям, не являющимся профессиональными программистами, получать доступ к информации без детального описания каждого шага, но только с встроенными предопределенными типами данных например, таблицами.
Последним шагом в этом направлении стала объектно-ориентированная технология, радикально изменившая сферу разработки программного обеспечения уже в 1990-х годах (Рисунок 1). Объектно-ориентированный подход позволяет упаковывать данные и код для их обработки вместе.
Таким образом практически снимается ограничение на типы данных, позволяя работать на любом уровне абстракции.
Эволюция систем управления информацией шла параллельно этому прогрессу, начиная с низкоуровневых программ, которые, например, напрямую производили операции чтения и записи со всей памятью без ограничения доступа, лентой, цилиндрами и дорожками диска и более высокоуровневыми средствами файловыми системами, которые оперировали с такими понятиями, как массивы, записи и индексы для повышения производительности. Базы данных в свою очередь начинали с модели записей и индексов (ISAM и др.), приобретая со временем способность восстановления после сбоев, проверки целостности данных и возможности работы нескольких пользователей одновременно.
Эти ранние модели данных (CODASYL) относились скорее к уровню машинной ориентации. В дальнейшем реляционные базы данных, пришедшие на смену в 1980 х годах, приобрели механизм запросов, позволяющий пользователю указать требуемое, предоставив СУБД самой оптимальным образом найти результат, используя динамическую индексацию.
Обьектно-ориентированные СУБД (ООСУБД) стали разрабатываться с середины 80 х годов в основном для поддержки приложений САПР. Сложные структуры данных систем автоматизированного проектирования оказалось очень удобно оформлять в виде объектов, а технические чертежи проще хранить в базе данных, чем в файлах. Это позволяет обойтись без декомпозиции графических структур на элементы и записи их в файлы после завершения работы с чертежом, выполнения обратной операции при внесении любого изменения.
Если типичные реляционные базы данных имеют связи глубиной в два уровня, то иерархическая информация чертежей САПР обычно включает порядка десяти уровней, что требует достаточно сложных операций для "сборки" результата. Объектные базы данных хорошо соответствовали подобным задачам, и эволюция многих СУБД началась именно с рынка САПР.
Между тем рынок САПР был быстро насыщен, и в начале 90 х годов производители ООСУБД обратили внимание на другие области применения, уже прочно занятые реляционными СУБД. Для этого потребовалось оснастить ООСУБД функциями оперативной обработки транзакций (OLTP), утилитами администратора баз данных (database administrator DBA), средствами резервного копирования/восстановления и т. д. Работы в данном направлении продолжаются и сегодня, но уже можно сказать, что переход к коммерческим приложениям идет достаточно успешно.
В реляционных базах данных (Relational Database System, RDBS) все данные отображаются в двумерных таблицах. База данных, таким образом, это ни что иное, как набор таблиц. RDBS и ориентированные на записи системы организованы на основе стандарта B-Tree или методе доступа, основанном на индексации Indexed Sequential Access Method (ISAM) и являются стандартными системами, использующимисg в большинстве современных программных продуктов.
Для обеспечения комбинирования таблиц для определения связей между данными, которые практически полностью отсутствуют в большинстве программных реализаций B-Tree и ISAM, используется языки, подобные SQL (IBM), Quel (Ingres) и RDO (Digital Equipment), причем стандартом отрасли в настоящее время стал язык SQL, поддерживаемый всеми производителями реляционных СУБД.
Реальные приложения обычно написаны на других языках, генерирующих код на языке SQL и передающих их в СУБД в виде текста в формате ASCII. Нужно отметить также, что практически все реальные реляционные (и не только реляционные) системы помимо реализации стандарта ANSI SQL, известного сейчас в последней редакции под именем SQL2 (или SQL-92), включают в себя дополнительные расширения, например, поддержка архитектуры клиент-сервер или средства разработки приложений.
Строки таблицы составлены из полей, заранее известных базе данных. В большинстве систем нельзя добавлять новые типы данных. Каждая строка в таблице соответствует одной записи.
Положение данной строки может изменяться вместе с удалением или вставкой новых строк.
Чтобы однозначно определить элемент, ему должны быть сопоставлены поле или набор полей, гарантирующих уникальность элемента внутри таблицы. Такое поле или поля называются первичным ключом (primary key) таблицы и часто являются числами.
Если одна таблица содержит первичным ключ другой, это позволяет организовать связь между элементами разных таблиц. Это поле называется внешним ключом (foreign key).
Так как все поля одной таблицы должны содержать постоянное число полей заранее определенных типов, приходится создавать дополнительные таблицы, учитывающие индивидуальные особенности элементов, при помощи внешних ключей. Такой подход сильно усложняет создание сколько нибудь сложных взаимосвязей в базе данных.
Желающим убедится, что это действительно так и не пожалевшим на это определенный отрезок времени, компания POET Software любезно предоставляет возможность ознакомиться с примером в своей "белой книге" "POET Technical Reference". База данных рядового предприятия общепита (клиенты Джордж Буш и Эдди Мэрфи) состоит из четырех таблиц.
Еще один крупный недостаток реляционных баз данных это высокая трудоемкость манипулирования информацией и изменения связей.
Несмотря на рассмотренные в п. 2 недостатки реляционных баз данных, они обладают рядоT достоинств:
Кроме того, во всем мире значительные средства уже инвестированы в реляционные СУБД. Многие организации не уверены, что затраты, связанные с переходом на объектные базы данных, окупятся.
Поэтому многие пользователи заинтересованы в комбинированном подходе, который бы им позволил воспользоваться достоинствами объектных баз данных, не отказываясь полностью от своих реляционных БД. Такие решения действительно существуют. Если переход от реляционной базы к объектной обходится слишком дорого, то применение последней в качестве расширения и дополнения реляционных СУБД часто является более экономичной альтернативой.
Компромиссные решения позволяют соблюсти баланс между объектами и реляционными таблицами (Рисунок 2).
Объектно-реляционные адаптеры. Этот метод предполагает использование так называемого объектно-реляционного адаптера, который автоматически выделяет программные объекты и сохраняет их в реляционных базах данных. Объектно-ориентированные приложение работает как рядовой пользователь СУБД. Несмотря на некоторое снижение производительности, такой вариант позволяет программистам целиком сконцентрироваться на объектно-ориентированной разработке.
Кроме того, все имеющиеся на предприятии приложения по-прежнему могут обращаться к данным, хранящимся в реляционной форме.
Некоторые объектные СУБД, например GemStone компании GemStone Systems, могут сами выполнять роль мощного объектно-реляционного адаптера, позволяя объектно-ориентированным приложениям обращаться к реляционным БД.
Объектно-реляционные адаптеры, такие как Odapter компании Hewlett-Packard для СУБД Oracle, можно с успехом использовать во многих областях, например в качестве связующего ПО, объединяющего объектно-ориентированные приложения с реляционными СУБД.
Объектно-реляционные шлюзы. При использовании такого метода пользователь взаимодействует с БД при помощи языка ООСУБД, а шлюз заменяет все объектно-ориентированные элементы этого языка на их реляционные компоненты. За это опять приходиться расплачиваться производительностью.
Например, шлюз должен преобразовать объекты в набор связей, сгенерировать оригинальные идентификаторы (original identifier OID) объектов и передать это в реляционную БД. Затем шлюз должен каждый раз, когда используется интерфейс реляционной СУБД, преобразовывать OID, найденный в базе, в соответствующий объект, сохраненный в РСУБД.
Производительность в рассмотренных двух подходах зависит от способа доступа к реляционной базе данных. Каждая РСУБД состоит из двух уровней: уровня управления данными (data manager layer) и уровня управления носителем (storage manager layer).
Первый из них обрабатывает операторы на языке SQL, а второй отображает данные в базу. Шлюз или адаптер могут взаимодействовать как с уровнем данных (то есть обращаться к РСУБД при помощи SQL), так и с уровнем носителя (вызовами процедур низкого уровня).
Производительность в первом случае намного ниже (например, система OpenODB фирмы Hewlett-Packard, которая может выполнять роль шлюза, поддерживает только на высоком уровне).
Гибридные СУБД. Еще одним решением может стать создание гибридных объектно-реляционных СУБД, которые могут хранить и традиционные табличные данные, и объекты.
Многие аналитики считают, что будущее за такими гибридными БД. Ведущие поставщики реляционных СУБД начинают (или планируют) добавлять к своим продуктам объектно-ориентированные средства. В частности, Sybase и Informix собираются в следующих версиях СУБД ввести поддержку объектов.
Подобные разработки намерены вести и независимые фирмы. Например, компания Shores готовится оснастить объектно-ориентированными средствами СУБД Oracle8, выпуск которой намечен на конец 1996 г.
С другой стороны, производители объектных СУБД, такие как компания Object Design, сознают, что объектно-ориентированные базы данных в обозримом будущем не заменят реляционные СУБД. Это вынуждает их создавать шлюзы для поддержки реляционных и иерархических баз данных иди различного рода интерфейсы, характерным примером которых является объектно-реляционный интерфейс Ontos Integration Server фирмы Ontos, применяемый в сочетании с ее ООБД Ontos/DB.
"Белыми книгами" с названием, вынесенным в заголовок, с избытком снабдит любая компания, занимающаяся объектными базами данных. Кое-что о преимуществах и недостатках объектно-ориентированных СУБД уже упоминалось выше, подведем в таком случае итог.
Объектно-ориентированные базы данных применяются с конца 1980-х для обеспечения управления базами данных приложениями, построенными в соответствии с концепцией объектно-ориентированного программирования. Объектная технология расширяет традиционную методику разработки приложений новым моделированием данных и методами программирования.
Для повторного использования кода и улучшения сохранности целостности данных в объектном программировании данные и код для их обработки организованы в объекты. Таким образом, практически полностью снимаются ограничения на типы данных.
Если данные состоят из коротких, простых полей фиксированной длины (имя, адрес, баланс банковского счета), то лучшим решением будет применение реляционной базы данных. Если, однако, данные содержат вложенную структуру, динамически изменяемый размер, определяемые пользователем произвольные структуры (мультимедиа, например), представление их в табличной форме будет, как минимум, непростым.
В то же время в ООСУБД каждая определенная пользователем структура это объект, непосредственно управляемый базой данных.
В РСУБД связи управляются пользователем, создающим внешние ключи. Затем для обнаружения связей динамически во время выполнения система просматривает две (или больше) таблицы, сравнивая внешние ключи до достижения соответствия. Этот процесс, называемый объединением (join), является слабой стороной реляционной технологии.
Более двух или трех уровней объединений сигнал, чтобы искать лучшее решение. В ООСУБД пользователь просто объявляет связь, и СУБД автоматически генерирует методы управления, динамически создавая, удаляя и пересекая связи.
Ссылки при этом прямые, нет необходимости в просмотре и сравнении или даже поиске индекса, который может сильно сказаться на производительности. Таким образом, применение объектной модели предпочтительнее для баз данных с большим количеством сложных связей: перекрестных ссылок, ссылок, связывающих несколько объектов с несколькими (many-to-many relationships) двунаправленными ссылками.
В отличие от реляционных, ООСУБД полностью поддерживают объектно-ориентированные языки программирования. Разработчики, применяющие С++ или Smalltalk, имеют дело с одним набором правил (позволяющих использовать такие преимущества объектной технологии, как наследование, инкапсуляция и полиморфизм). Разработчик не должен прибегать к трансляции объектной модели в реляционную и обратно. Прикладные программы обращаются и функционируют с объектами, сохраненными в базе данных, которая использует стандартную объектно-ориентированную семантику языка и операции.
Напротив, реляционная база данных требует, чтобы разработчик транслировал объектную модель к поддерживаемой модели данных и включил подпрограммы, чтобы обеспечить это отображение во время выполнения. Следствием являются дополнительные усилия при разработке и уменьшение эффективности.
И, наконец, ООСУБД подходят (опять же без трансляций между объектной и реляционной моделями) для организации распределенных вычислений. Традиционные базы данных (в том числе и реляционные и некоторые объектные) построены вокруг центрального сервера, выполняющего все операции над базой. По существу, эта модель мало отличается от мэйнфреймовой организации 60 х годов с центральной ЭВМ мэйнфреймом (mainframe), выполняющей все вычисления, и пассивных терминалов.
Такая архитектура имеет ряд недостатков, главным из которых является вопрос масштабируемости. В настоящее время рабочие станции (клиенты) имеют вычислительную мощность порядка 30 50 % мощности сервера базы данных, то есть большая часть вычислительных ресурсов распределена среди клиентов. Поэтому все больше приложений, и в первую очередь базы данных и средства принятия решений, работают в распределенных средах, в которых объекты (объектные программные компоненты) распределены по многим рабочим станциям и серверам и где любой пользователь может получить доступ к любому объекту.
Благодаря стандартам межкомпонентного взаимодействия (об этом позже) все эти фрагменты кода комбинируются друг с другом независимо от аппаратного, программного обеспечения, операционных систем, сетей, компиляторов, языков программирования, различных средств организации запросов и формирования отчетов и динамически изменяются при манипулировании объектами без потери работоспособности.
Все ООСУБД по определению поддерживают сохранение и разделение объектов. Но, когда дело доходит до практической разработки приложений на разных ООСУБД, проявляется множество отличий в реализации поддержки трех характеристик:
Отметим, что ООБД не требуют многих из тех внутренних функций и механизмов, которые столь привычны и необходимы в реляционных БД. Например, при небольшом числе пользователей, длинных транзакциях и незначительной загрузке сервера объектные СУБД не нуждаются в поддержке сложных механизмов резервного копирования/восстановления (исторически сложилось так, что первые ООБД проектировались для поддержки небольших рабочих групп порядка десяти человек и не были приспособлены для обслуживания сотен пользователей).
Тем не менее технология БД определенно созрела для крупных проектов.
Для иллюстрации первой категории рассмотрим механизм кэширования объектов. Большинство объектных СУБД помещают код приложения непосредственно в то же адресное пространство, где работает сама СУБД. Благодаря этому достигается повышение производительности часто в 10 100 раз по сравнению с раздельными адресными пространствами.
Но при такой модели объект с ошибкой может повредить объекты и разрушить базу данных.
Существуют два подхода к организации реакции СУБД для предотвращения потери данных. Большинство систем передают приложению указатели на объекты, и рано или поздно такие указатели обязательно становятся неверными. :ак, они всегда неправильны после перехода объекта к другому пользователю (например, после перемещения на другой сервер).
Если программист, разрабатывающий приложение, пунктуален, то ошибки не возникает. Если же приложение попытается применить указатель в неподходящий для этого момент, то в лучшем случае произойдет крах системы, в худшем будет утеряна информация в середине другого объекта и нарушится целостность базы данных.
Есть метод, лучший, чем использование прямых указателей (Рисунок 3). СУБД добавляет дополнительный указатель и при необходимости, если объект перемещается, система может автоматически разрешить ситуацию (перезагрузить, если это необходимо, объект) без возникновения конфликтной ситуации.
Существует еще одна причина для применения косвенной адресации: благодаря этому можно отслеживать частоту вызовов объектов для организации эффективного механизма свопинга.
Это необходимо для реализации уже второго необходимого свойства баз данных масштабируемости. Опять следует упомянуть организацию распределенных компонентов.
Классическая схема клиент-сервер, где основная нагрузка приходится на клиента (такая архитектура называется еще "толстый клиент-тонкий сервер"), лучше справляется с этой задачей, чем мэйнфреймовая структура, однако ее все равно нельзя масштабировать до уровня предприятия. Благодаря многозвенной архитектуре клиент-сервер (N-Tier architecture) происходит равномерное распределение вычислительной нагрузки между сервером и конечным пользователем. Нагрузка распределяется по трем и более звеньям, обеспечивающим дополнительную вычислительную мощность. К чему же еще ведет такая практика? "Архитектура клиент-сервер, еще совсем недавно считавшаяся сложной средой, постепенно превратилась в исключительно сложную среду.
Почему? Благодаря ускоренному переходу к использованию систем клиент-сервер нескольких звеньев" (PCMagazine). Разработчикам приходится расплачиваться дополнительными сложностями, большими затратами времени и множеством проблем, связанных с интеграцией.
Оставим очередное упоминание распределенных компонентов на этой не лишенной оптимизма ноте.
Руководствуясь первым принципом, программист определяет потенциально опасные участки кода и вставляет в программу некоторые действия, соответствующие началу транзакции сохранение информации, необходимой для восстановления после сбоя, и окончаUию транзакции восстановление или, в случае невозможности, принятие каких-то других мер, например, отправка сообщения администратору. В современных СУБД этот механизм обеспечивает восстановление в случае возникновения практически любой ошибки системы, приложения или компьютера, хотя, конечно, нельзя говорить об идеальной защите от сбоев.
В мэйнфреймовой архитектуре единственным источником сбоев была центральная ЭВМ. При переходе к распределенной многозвенной организации ошибки могут вызывать не только компьютеры, включенные в сеть, но и коммуникационные каналы. В многозвенной архитектуре при сбое одного из звеньев без специальных мер результаты работы других окажутся бесполезными.
Поэтому при разработке распределенных систем обеспечивается принципиально более высокий уровень обеспечения отказоустойчивости. Назовем обязательные для современных распределенных СУБД свойства:
Что произойдет, если один из компонентов выйдет из строя? Система, созданная в соответствии только с вышеизложенными доводами, приостановит работу всех пользователей и прервет все транзакции.
Поэтому важно такое свойство СУБД, как независимость компонентов.
При сетевом сбое сеть разделяется на части, компоненты каждой из которых не могут сообщаться с компонентами другой части. Для того, чтобы сохранить возможность работы внутри каждой такой части, необходимо дублирование критически важной информации внутри каждого сегмента.
Современные системы позволяют администратору базы данных динамически определять сегменты сети, варьируя таким образом уровень надежности всей системы в целом.
И, наконец, о копировании (replication) данных. Простейшим способом является добавление к каждому (основному) серверу резервного. После каждой операции основной сервер передает измененные данные резервному, который автоматически включается в случае выхода из строя основного. Естественно, такая схема не лишена недостатков.
Во-первых, это приводит к значительным накладным расходам при дублировании данных, что не только сказывается на производительности, но и само по себе является потенциальным источником сбоев. Во-вторых, в случае сбоя, повлекшего за собой разрыв соединения между двумя серверами, каждый из них должен будет работать в своем сегменте сети в качестве основного сервера, причем изменения, сделанные на серверах за время работы в таком режиме, будет невозможно синхронизовать даже после восстановления работоспособности сети.
Более совершенным является подход, когда создается необходимое (подбираемое в соответствии с требуемым уровнем надежности) число копий в сегменте. Таким образом увеличивается доступность копий и даже (при распределении нагрузки между серверами) повышается скорость чтения.
Проблема невозможности обновления данных несколькими серверами одновременно в случае их взаимной недоступности решается за счет разрешения проведения модификаций только в одном из сегментов, например имеющем наибольшее число пользователей.