Моделирование в научных исследованиях стало применяться еще в глубокой древности и постепенно захватывало все новые области научных знаний : техническое конструирование , строительство и архитектуру , астрономию , физику , химию , биологию и , наконец , общественные науки . Большие успехи и признание практически во всех отраслях современной науки принес методу моделирования ХХ в . Однако методология моделирования долгое время развивалась независимо отдельными науками . Отсутствовала единая система понятий, единая терминология . Лишь постепенно стала осознаваться роль моделирования как универсального метода научного познания .
Термин модель широко используется в различных сферах человеческой деятельности и имеет множество смысловых значений . Рассмотрим только такие модели, которые являются инструментами получения знаний .
Модель - это такой материальный или мысленно представляемый объект, который в процессе исследования замещает объект-оригинал так, что его непосредственное изучение дает новые знания об объекте-оригинале .
Под моделирование понимается процесс построения , изучения и применения моделей . Оно тесно связано с такими категориями , как абстракция , аналогия , гипотеза и др . Процесс моделирования обязательно включает и построение абстракций , и умозаключения по аналогии, и конструирование научных гипотез.
Главная особенность моделирования в том , что это метод опосредованного познания с помощью объектов-заместителей . Модель выступает как своеобразный инструмент познания , который исследователь ставит между собой и объектом и с помощью которого изучает интересующий его объект . Именно эта особенность метода моделирования определяет специфические формы использования абстракций , аналогий , гипотез , других категорий и методов познания .
Необходимость использования метода моделирования определяется тем, что многие объекты ( или проблемы , относящиеся к этим объектам ) непосредственно исследовать или вовсе невозможно, или же это исследование требует много времени и средств.
Моделирование - циклический процесс . Это означает , что за первым четырехэтапным циклом может последовать второй , третий и т.д. При этом знания об исследуемом объекте расширяются и точняются, а исходная модель постепенно совершенствуется . Недостатки , обнаруженные после первого цикла моделирования , бусловленные малым знанием объекта и ошибками в построении модели , можно исправить в последующих циклах . В методологии моделирования , таким образом , заложены большие возможности саморазвития .
Фирма , производящая некоторую продукцию осуществляет её рекламу двумя способами через радиосеть и через телевидение . Стоимость рекламы на радио обходится фирме в 5 $ , а стоимость телерекламы - в 100$ за минуту .
Фирма готова тратить на рекламу по 1000 $ в месяц . Так же известно , что фирма готова рекламировать свою продукцию по радио по крайней мере в 2 раза чаще , чем по телевидению .
Опыт предыдущих лет показал , что телереклама приносит в 25 раз больший сбыт продукции нежели радиореклама .
Задача заключается в правильном распределении финансовых средств фирмы .
X1 - время потраченное на радиорекламу .
X2 - время потраченное на телерекламу .
Z - искомая целевая функция , оражающая максимальный сбыт от 2-ух видов рекламы .
X1=0 , X2=0 , Z=0 ;
Max Z = X1 + 25X2 ;
5X1 + 100X2 =1000 ;
X1 -2X2 = 0
Использование графического способа удобно только при решении задач ЛП с двумя переменными . При большем числе переменных необходимо применение алгебраического аппарата . В данной главе рассматривается общий метод решения задач ЛП , называемый симплекс-методом .
Информация , которую можно получить с помощью симплекс-метода , не ограничивается лишь оптимальными значениями переменных . Симплекс-метод фактически позволяет дать экономическую интерепритацию полученного решения и провести анализ модели на чувствительность .
Процесс решения задачи линейного программирования носит итерационный характер : однотипные вычислительные процедуры в определенной последовательности повторяются до тех пор , пока не будет получено оптимальное решение . Процедуры , реализуемые в рамках симплекс-метода , требуют применения вычислительных машин - мощного средства решения задач линейного программирования .
Симлекс-метод - это характерный пример итерационных вычислений , используемых при решении большинства оптимизационных задач . В данной главе рассматриваются итерационные процедуры такого рода , обеспечивающие решение задач с помощью моделей исследования операций .
В гл 2 было показано , что правая и левая части ограничений линейной модели могут быть связаны знаками = , = и = . Кроме того , переменные , фигурирующие в задачах ЛП , могут быть неотрицательными или не иметь ограничения в знаке . Для построения общего метода решения задач ЛП соответствующие модели должны быть представлены в некоторой форме , которую назовем стандатрной формой линейных оптимизационных моделей . При стандартной форме линейной модели
Покажем , каким образом любую линейную модель можно привести к стандартной .
можно представить в виде равенства , прибавляя остаточную переменную к левой части ограничения ( вычитая избыточную переменную из левой части ) .
Например , в левую часть исходного ограничения
5X1 + 100X2 = 1000
вводистя остаточная переменная S1 0 , в результате чего исходное неравенство обращается в равенство
5X1 + 100X2 + S1 = 1000 , S1 = 0
Если исходное ограничение определяет расход некоторого ресурса , переменную S1 следует интерпретировать как остаток , или неиспользованную часть , данного ресурса .
Рассмотрим исходное ограничение другого типа :
X1 - 2X2 = 0
Так как левая часть этого ограничения не может быть меньше правой , для обращения исходного неравенства в равенство вычтем из его левой части избыточную переменную S2 0 . В результате получим
X1 - 2X2 - S2 = 0 , S2 = 0
Например равенство X1 - 2X2 - S2 = 0 эквивалентно равенству - X1 + 2X2 + S2 = 0
Например можно вместо 2 4 записать - 2 - 4 , неравенство X1 - 2X2 = 0 заменить на - X1 + 2X2 = 0
Любую переменную Yi , не имеющую ограничение в знаке , можно представить как разность двух неотрицательных переменных :
Yi=Yi-Yi, где Yi,Yi=0.
Такую подстановку следует использовать во всех ограничениях , которые содержат исходную переменную Yi , а также в выражении для целевой функции .
Обычно находят решение задачи ЛП , в котором фигурируют переменные Yi и Yi , а затем с помощью обратной подстановки определяют величину Yi . Важная особенность переменных Yi и Yi состоит в том , что при любом допустимом решении только одна из этих переменных может принимать положительное значение , т.е. если Yi0 , то Yi=0, и наоборот . Это позволяет рассматривать Yi как остаточную переменную , а Yi - как избыточную переменную , причем лишь одна из этих переменных может принимать положительное значение . Указанная закономерность широко используется в целевом программировании и фактически является предпосылкой для использования соответсвующих преобразований в задаче 2.30
Целевая функция линейной оптимизационной модели , представлена в стандартной форме , может подлежать как максимизации , так и минимизации . В некоторых случаях оказывается полезным изменить исходную целевую функцию .
Максимизация некоторой функции эквивалентна минимизации той же функции , взятой с противоположным знаком , и наоборот . Например максимизация функции
Z = X1 + 25X2
эквивалентна минимизации функции
( -Z ) = -X1 - 25X2
Эквивалентность означает , что при одной и той же совокупности ограничений оптимальные значения X1 , X2 , в обоих случаях будут одинаковы . Отличие заключается только в том , что при одинаковых числовых значениях целевых функций их знаки будут противоположны .
Симплекс-метод .
В вычислительной схеме симплекс-метода реализуется упорядоченный процесс , при котором , начиная с некоторой исходной допустимой угловой точки ( обычно начало координат ) , осуществляются последовательные переходы от одной допустимой экстремальной точки к другой до тех пор , пока не будет найдена точка , соответствующая оптимальному решению .
Общую идею симплекс-метода можно проиллюстрировать на примере модели , посроенной для нашей задачи . Пространство решений этой задачи представим на 1 . Исходной точкой алгоритма является начало координат ( точка А на 1 ) . Решение , соответствующее этой точке , обычно называют начальным решением . От исходной точки осуществляется переход к некоторой смежной угловой точке .
Выбор каждой последующей экстремальной точки при использовании симплекс-метода определяется следующими двумя правилами .
Таким образом , отыскание оптимального решения начинается с некоторой допустимой угловой точки , и все переходы осуществляются только к смежным точкам , причем перед новым переходом каждая из полученных точек проверяется на оптимальность .
Определим пространство решений и угловые точки агебраически . Требуемые соотнощшения устанавливаются из указанного в таблице соответствия геометрических и алгебраических определений .
Геометрическое определение | Алгебраическое определение ( симплекс метод ) |
Пространство решений | Ограничения модели стандартной формы |
Угловые точки | Базисное решение задачи в стандартной форме |
Экстремальная точка | Нулевые переменные | Ненулевые переменные |
А | S2 , X2 | S1 , X1 |
В | S1 , X2 | S2 , X1 |
С | S1 , S2 | X1 , X2 |
Экстремальная точка | Нулевые переменные | Ненулевые переменные |
А | S2 , X2 | S1 , X1 |
В | S1 , X2 | S2 , X1 |
симплекс-алгоритм состоит из следующих шагов.
Шаг 0. Используя линейную модель стандартной формы , опреде-
ляют начальное допустимое базисное решение путем приравнива-
ния к нулю п т ( небазисных ) переменных.
Шаг 1. Из числа текущих небазисных ( равных нулю ) перемен-
ных выбирается включаемая в новый базис переменная , увеличение
которой обеспечивает улучшение значения целевой функции. Если
такой переменной нет , вычисления прекращаются , так как текущее
базисное решение оптимально . В противном случае осуществляется
переход к шагу 2.
Шаг 2. Из числа переменных текущего базиса выбирается исклю-
чаемая переменная , которая должна принять нулевое значение ( стать
небазисной ) при введении в состав базисных новой переменной .
Шаг 3. Находится новое базисное решение , соответствующее
новым составам небазисных и базисных переменных . Осуществляется переход к шагу 1.
Поясним процедуры симплекс-метода на примере решения нашей зада-
чи . Сначала необходимо представить целевую функцию и ограничения модели в стандартной форме:
Z - X1 - 25X2 +0S1 -0S2 = 0 ( Целевая функция )
5X1 + 100X2 + S1 = 1000 ( Ограничение )
-X1 + 2X2 + S2 = 0 ( Ограничение )
Как отмечалось ранее , в качестве начального пробного решения
используется решение системы уравнений , в которой две переменные принимаются равными нулю . Это обеспечивает единст-
венность и допустимость получаемого решения . В рассматриваемом
случае очевидно, что подстановка X1 = X2 = 0 сразу же приводит к следующему результату: S1 = 1000 , S2 = 0 ( т. е. решению , соответствующему точке А на 1 ) . Поэтому точку А можно использовать как начальное допустимое решение . Величина Z в этой точке равна нулю , так как и X1 и X2 имеют нулевое значение . Поэтому , преобразовав уравнение целевой функции так , чтобы его правая часть стала равной нулю , можно убедиться в том , что правые части уравнений целевой функции и ограничений полностью характеризуют начальное решение . Это имеет место во всех случаях , когда начальный базис состоит из остаточных переменных.
Полученные результаты удобно представить в виде таблицы :
Базисные переменные | Z | X1 | X2 | S1 | S2 | Решение | |
Z | 1 | -1 | - 25 | 0 | 0 | 0 | Z - уравнение |
S1 | 0 | 5 | 100 | 1 | 0 | 1000 | S1 -уравнение |
S2 | 0 | -1 | 2 | 0 | 1 | 0 | S2 - уравнение |
Базисные переменные | Z | X1 | X2 | S1 | S2 | Решение |
Z | ||||||
S1 | ||||||
S2 | 0 | -1/2 | 1 | 0 | 1/2 | 0 |
старое S1 - уравнение : ( 0 5 100 1 0 1000 )
( - 100 ) * ( 0 -1/2 1 0 1/2 0 )
( 0 55 0 1 -50 1000 )
Новая симплекс-таблица будет иметь вид :
Базисные переменные | Z | X1 | X2 | S1 | S2 | Решение | |
Z | 1 | -131/2 | 0 | 0 | 121/2 | 0 | Z - уравнение |
S1 | 0 | 55 | 0 | 1 | -50 | 1000 | S1 -уравнение |
X2 | 0 | -1/2 | 1 | 0 | 1/2 | 0 | X2 - уравнение |