d9e5a92d

Процессы репарации


При таком подходе становятся ясными описанные в научной литературе явления модифицирования радиобиологического действия различными физическими агентами: слабым электрическим током, элетростатическими полями, магнитными полями, в том числе геомагнитным полем. Эти факторы, по-видимому, могут оказывать влияние путем изменения параметров когерентности, например фазы и амплитуды электронной волновой функции биологических квазикристаллических структур.
В механизмах электромагнитного воздействия на биологические объекты необходимо учитывать явления, происходящие на межфазных границах в силу развитой компартментации и отражающие уже надатомный уровень взаимодействия в биоструктурах. По мнению некоторых исследователей, ограниченность движения электрона, обусловленная малой толщиной слоев мембранных структур и характером их построения, указывает на возможность проявления в них различных квантовых эффектов за счет изменения расположения и количества энергетических уровней дискретного спектра электрона. Авторы делают вывод, что тонкие слои в мембранных структурах выполняют функции селективного приемника излучения, повышая чувствительность клеток к резонансному воздействию излучения.

Таким образом, и на субклеточном уровне открываются возможности для проявления квантовых эффектов и объяснения их с помощью специфических особенностей биологического действия электромагнитного излучения.
В то же время известно, что на поверхности клеточных структур имеется двойной электрический слой, образованный заряженными химическими группами поверхности и диффузной оболочкой противоионов среды, компенсирующей заряд поверхности. При воздействии электромагнитного излучения на такие системы будут возникать индуктивные электрические токи на границе раздела фаз и разнообразные биологические реакции за счет изменения функции внутриклеточных структур.

Но этот механизм близок к известным классическим описаниям действия радиации, в то время как нас интересуют новые подходы в этой области.
В настоящее время уже предложена такая новая модель взаимодействия мембраны (нервных) клеток с внешним электромагнитным излучением. Автор ее справедливо подчеркивает, что существующие экспериментальные данные указывают на прямое взаимодействие между внешним электромагнитным полем и внутренними глубоколежащими структурами на основе частотно-резонансного способа действия, и выводит даже эффективный гамильтониан для таких структур. Но автор цитируемой работы совершенно забывает, что такое взаимодействие требует необычного механизма связи, а именно биополевого взаимодействия на основе квантовых процессов, и поэтому предлагаемые им исследования сечения поглощения как функции частоты для разных биологических тканей не помогут вскрыть существа дела.

В целом указанная работа весьма прогрессивная, хотя в ней нет анализа самого основного вопроса - о происхождении электрического поля мембран и тесно связанного с этим вопроса об электрическом поле живого организма в целом.
Наиболее правильной, на наш взгляд, является точка зрения о биоэлектретном происхождении электрического поля живых организмов. Как известно, электретом называется электронейтральное тело, обладающее объемной электрической поляризацией и обусловленным ею внешним электрическим полем.

Исследования показали,что вблизи человека (и других живых организмов) регистрируются квазистатические электрические поля,в несколько десятков вольтметр, не связанные с трибоэлектрическими зарядами. Подобно обычным электретам, эти поля существуют постоянно, восстанавливают свою исходную величину после испарения экранирующей водной пленки.

Их основой, по-видимому, является непрерывная поляризация и деполяризация связанных зарядов живой ткани за счет конформа-ционных изменений на молекулярном уровне.
Следует заметить, что в Живых организмах выполняется и другое важное свойство, характеризующее обычные электреты: отставание деполяризации и реполяризации свободных зарядов от деполяризации и реполяризации связанных зарядов. Это происходит за счет того, что несмотря на высокую электропроводность живых тканей (до 10 Ом/см), изменение состояния части связанных зарядов в живом организме происходит быстрее, чем свободных зарядов, приводя к последующей деполяризации свободных зарядов и образованию внешнего электрического поля.



По нашему мнению, основой этого является возможность быстрого протонного туннелирования, наличие электронных систем с обобщенными орбитами, по которым движение заряженных частиц может происходить гораздо быстрее, чем передвижение свободных зарядов в условиях сильной компартментации в клетках.
Данные молекулярной биофизики также подтверждают правильность выдвигаемой гипотезы о биоэлектронном происхождении электрического поля живых организмов.
Связанные заряды биологических структур клетки (ионо-генные группы, полярные молекулы, гетерополярные связи макромолекулах и т.д. ) находятся в упорядоченном состоянии. Об этом свидетельствуют высокие дипольные моменты молекулярных, надмолекулярных и клеточных образований. Измерения показывают очень высокие значения дипольных моментов - до 103 дебая у белковых молекул, 104 дебая у вирусов и до 107 дебая у бактериальных клеток.

Выражением этой упорядоченности является внешняя электризация в виде объемной электрической поляризации, векторы которой имеют характерную направленность у всех организмов как животных, так и растений.
Связанные заряды в живых клетках подвергаются непрерывным изменениям вследствие конформационных перестроек в макромолекулах, изменениям их эффективного объема и формы, следствием чего является изменение распределения поверхностных электрических зарядов.
Признание биоэлектретной природы электрического поля живых организмов дает новые возможности для правильного биофизического анализа парапсихологических явлений, вооружает исследователей новой прогрессивной моделью для познания механизма биологического действия биоэлектромагнитного излучения. Например, на этой основе может быть понято модифицирующее действие рук экстрасенса, воздействующего своим биополем на живые организмы.

Процессы репарации в этом случае рассматриваются как производная функция от вышеописанного биоэлектретного состояния и, по-видимому, они сводятся к восстановлению нативных электрических характеристик микро- и макроструктур живого организма.
Живой организм представляет собой сложнейшее образование и поэтому предлагаемая выше модель, в которой для оценки биоэнергетического действия мы исходим из представления о биологическом объекте как биоэлектретном жидком квазикристаллическом многофазном компар-тментном образовании, создающем специфическое по свойствам и конфигурации электромагнитное поле, является, безусловно, ограниченной и неполной. С тем, чтобы расширить эти представления, кратко опишем работы, сделанные в этом направлении.

Анализ этих работ указывает на полимодальность биоэлектромагнитного поля и, видимо, с этим связаны сложности в его определении и изучении.
Прежде всего с помощью специальных зондирующих усилителей (входная емкость 0,05 пф при сопротивлении 312 см) было обнаружено существование ауральных электрических полей, источником которых является внутреннее электротоническое поле, трибоэлектрические заряды и колебания индукционных зарядов на поверхности животных и растений, возникающие вследствие действия атмосферного электричества. Ауральные поля регистрируются на расстоянии в несколько сантиметров от тела и могут быть как постоянными, так и переменными, с амплитудами от Долей милливольт до сотен вольт, причем они несут информацию о функциональном состоянии органов тела, недоступных непосредственному наблюдению.
В то же время сообщено о биоплазменном электромагнитном поле, характерной особенностью которого является система делокализованых элементарных частиц (протонов и электронов) со специфической пространственной организацией в живом организме. Биоплазма является низкочастотным электрическим излучением в диапазоне 0,1 -30 Гц, которое может фиксироваться на расстоянии нескольких метров от биологического объекта.
Как было указано выше, исследователи обнаружили и биоэлектретное поле живого организма, источником которого является квазиэлектретная поляризация живых тканей, причем это поле регистрируется непосредственно на поверхности биологического объекта.
Таким образом, из вышеописанного следует, что имеется по крайней мере, три вида электрических полей с разными характеристиками, которые регистрируются на различных расстояниях от живого объекта и имеют различное происхождение. Выделены и другие виды биоэлектромагнитных полей, которые, судя по описанию, близки к вышеупомянутым.

Особо следует отметить биоэлектрические поля рыб, связанные с работой электрических органов и деятельностью неспециализированных нервно-мышечных систем. Имеются сведения о наличии естественных биомагнитных полей и непосредственном измерении биомагнитного поля человека вне экранирования.
Наряду с вышеописанными видами полей следует учитывать возможность образования в живом организме вторичного электромагнитного излучения, возникающего в результате воздействия на организм внешних электромагнитных волн и связанного с механическими колебаниями в живом организме на всех его уровнях, что создает биоэлектромагнитное поле механического происхождения.



Содержание раздела