d9e5a92d

Решение

Единый принцип. Условимся называть представителя элиты трансильванского общества аристократом типа 1, если на вопрос "дважды два - четыре?" он отвечает "бал". Разумеется, на любой другой вопрос с правильным ответом "да" трансильванский аристократ типа 1 ответит "бал".
   Условимся называть представителя трансильванской элиты аристократом типа 2, если он не типа 1. Это означает, что если X - любое истинное высказывание (например, "дважды два - четыре") и вы спрашиваете аристократа типа 2, истинно ли X, то он ответит "да" (не путать с "нашим" привычным "да"!).
   Сразу же ясно, что если "бал" означает "да", то аристократы типа 1 надежны, а аристократы типа 2 ненадежны. Если же "бал" означает "нет", то картина обратная (аристократы типа 1 ненадежны, а аристократы типа 2 надежны).
   Единый принцип конструирования вопросов заключается в следующем. Чтобы выяснить, истинно ли любое утверждение X, достаточно спросить у любого трансильванского аристократа, эквивалентно ли утверждение о том, что он аристократ типа 1, утверждению X. Вопрос можно задать, например, так: "Истинно ли X в том и только в том случае, если вы аристократ типа 1?" Докажем, что если на такой вопрос последует ответ: "бал", то X должно быть истинно, а если "да", то X должно быть ложно. Следовательно, "волшебное" утверждение S - это просто-напросто утверждение "вы аристократ типа 1" (или "на вопрос "дважды два - четыре?" вы ответите "бал").

Доказательство. Пусть S - утверждение "вы аристократ типа 1", X - утверждение, истинность или ложность которого требуется установить. Вы задаете вопрос: "Эквивалентно ли S утверждению X?" Предположим, что вам отвечают "нет". Требуется доказать, что X должно быть истинно.

Случай 1: "бал" означает "да". B этом случае нам известны два факта: 1) аристократ типа 1 надежен; 2) наш собеседник, говорящий "бал", утверждает, что S эквивалентно X.
   Подслучай 1а: аристократ типа 1. Он надежен и высказывает истинные утверждения. Следовательно, S действительно эквивалентно X. Но S истинно (так как аристократ относится к типу 1). Значит, X истинно.
   Подслучай 1б: аристократ типа 2. Он ненадежен и высказывает ложные утверждения. Так как он утверждает, что S эквивалентно X, то в действительности S не эквивалентно X. Но S ложно (так как аристократ не принадлежит к типу 1), а X  (в книге X не было - наверное, опечатка - SStas) не эквивалентно S.
   Следовательно, X истинно.

Случай 2: "бал" означает "нет". B этом случае нам известны два факта: 1) аристократ типа 1 ненадежен; 2) наш собеседник, говорящий "бал", утверждает, что S не эквивалентно X.
      Подслучай 2а: аристократ типа 1. Он ненадежен и высказывает ложные утверждения. По его словам (не соответствующим действительности), S не эквивалентно X. Значит, на самом деле S эквивалентно X, а так как S истинно, то X истинно.
      Подслучай 2б: аристократ типа 2. Он надежен и высказывает истинные утверждения. Значит, S не эквивалентно X (так как, по его словам, S не эквивалентно X). Но S ложно. Следовательно, X должно быть истинно.

   Итак, доказано, что ответ "бал" означает истинность высказывания X. Повторив аналогичные рассуждения, мы могли бы доказать, что ответ "да" означает ложность высказывания X. Но к тому же результату можно прийти и более коротким путем, если рассуждать следующим образом.

   Предположим, что наш собеседник говорит в ответ "да". Ответ "да" на заданный вопрос означает то же, что и ответ "бал" на вопрос "Верно ли, что вы аристократ типа 1 в том и только в том случае, если X ложно?" (поскольку для любых двух утверждений Y и Z утверждение "Y эквивалентно Z" противоположно утверждению "Y эквивалентно не Z"). Следовательно, если бы вы задали вопрос "верно ли, что вы аристократ типа 1 в том и только в том случае, если X ложно?", то ваш собеседник ответил бы "бал". А так как он ответил бы "бал", то отсюда (как доказано выше) следует, что X действительно ложное утверждение.




Содержание раздела