d9e5a92d

Решение

Прежде всего докажем, что G - рыцарь. Для этого достаточно доказать, что его утверждение истинно, то есть что если C - рыцарь, то F также рыцарь. Мы докажем это тем, что выведем из посылки "С - рыцарь" заключение "F также рыцарь". Итак, предположим, что C - рыцарь. Тогда A и B - оба рыцари. Следовательно, X - дверь, ведущая во Внутреннее святилище, и либо дверь Y, либо дверь Z ведет во Внутреннее святилище.
Случай 1: дверь Y ведет во Внутреннее святилище. Тогда обе двери X и Y ведут во Внутреннее святилище. В этом случае D - рыцарь.
Случай 2: дверь Z ведет во Внутреннее святилище. Тогда обе двери X и Z ведут во Внутреннее святилище. В этом случае E - рыцарь.
   Итак, либо D, либо E должен быть рыцарем. Следовательно, высказанное F утверждение истинно, поэтому F - рыцарь.
   Итак, из посылки "С - рыцарь" мы вывели заключение "Р - рыцарь". Следовательно, верно, что если C - рыцарь, то Р - рыцарь. Именно это и утверждал G. Значит, G - рыцарь.
   Докажем теперь, что высказанное H утверждение истинно. По словам H, если G и H - оба рыцари, то A - рыцарь. Предположим, что H - рыцарь. Тогда G и H - оба рыцари. Кроме того, верно, что если G и H - оба рыцари, то A - рыцарь (именно так утверждал H, а он по предположению рыцарь). Значит, если H - рыцарь, то 1) G и H - рыцари;
2) если G и H - рыцари, то A - рыцарь.
   Из (1) и (2) следует, что A - рыцарь. Таким образом, если H - рыцарь, то A - рыцарь. Именно это утверждал H, поэтому H должен быть рыцарем. Его утверждение истинно, и так как G и H - рыцари, то A - рыцарь.
   Итак, мы установили, что A - рыцарь. Следовательно, дверь X действительно ведет во Внутреннее святилище, и нашему философу надлежит выбрать дверь X.




Содержание раздела