d9e5a92d

Решение

Не будь у вас "на вооружении" фундаментального принципа, решить эту задачу было бы довольно трудно. Но фундаментальный принцип позволяет без труда "расправиться" с задачей. Я предполагаю, что вам известны следующие свойства целых чисел: сумма двух четных чисел четна, сумма двух нечетных чисел также четна. Следовательно, вычитая четное число из четного числа или нечетное число из нечетного числа, вы получаете четноечисло. (Например, 12-8=4, 13-7=6.)
   Из высказанного C утверждения (в силу фундаментального принципа) следует, то A и B однотипны, то есть они либо оба рыцари, либо оба лжецы. Следовательно, их высказывания либо оба истинны, либо оба ложны. Предположим, что оба высказывания истинны. Тогда по утверждению A на острове имеется четное число лжецов. По утверждению B на острове (вместе с вами) находится нечетное число людей. Но вы не рыцарь и не лжец, и, кроме вас, других гостей на острове нет. Поэтому, вычитая четное число лжецов из четного числа рыцарей и лжецов, вы получаете четное число рыцарей. Следовательно, в данном случае сокровища зарыты где-то на острове. Предположим теперь, что оба утверждения ложны. Это означает, что на острове находится нечетное число лжецов и нечетное число рыцарей и лжецов (так как всего на острове вместе с вами находится четное число людей). Следовательно, число рыцарей снова должно быть четным, и сокровище, как и в предыдущем случае, должно быть зарыто где-то на острове.




Содержание раздела