d9e5a92d

Архитектура гибридной системы, использующей правила и прецеденты



Архитектура гибридной системы, использующей правила и прецеденты


Основная идея системы очень проста и элегантна. Сначала для решения текущей проблемы применяются правила, в результате чего формируется некоторое решение. Затем просматривается библиотека прецедентов на предмет выявления в ней ранее ветречавшегося случая исключения из использованных правил. Алгоритм работы системы приведен ниже.

Цикл, ПОКА не будет получено решение

{

1 . Для выбора следующей операции использовать правила.

2. Поиск в библиотеке "неотразимых" прецедентов, которые предлагают противоположный вариант выбора операции.

3. Если прецедент найден, использовать предлагаемый в нем вариант операции. Иначе использовать тот вариант, который предлагается правилами.

}

Обратите внимание на то, что обращение к правилам и прецедентам выполняется в каждом цикле. (Если программа не сможет найти ни правила, которое можно было бы применить, ни прецедента, она останавливается.)

Для того чтобы предложенная идея стала работоспособной, прецеденты в библиотеке должны быть проиндексированы по правилам, которым они противоречат. Рассмотрим, например, правило страховки водителей транспортных средств:

"Мужчины не старше 25 лет платят страховой взнос по повышенному тарифу".



Такое правило должно быть связано в библиотеке с прецедентом, в котором упоминается 18-летний юноша, успешно прошедший тесты повышенной сложности и выплачивающий взнос по сниженному тарифу.

На основании каких соображений принимается решение, является ли прецедент "неотразимым" или нет? Предложенное Голдингом решение состоит в следующем. Когда мы проводим аналогию между прецедентом и текущим случаем, мы тем самым формируем некое неявное правило, скрытое от посторонних глаз. Предположим, что в нашем примере речь идет о водителе-мужчине 20 лет, который имеет квалификацию повышенной категории, и мы обнаружили аналогичный прецедент, но в нем речь шла о 1 8-летнем водителе. Эта аналогия сформирует неявное правило в виде

"Мужчины не старше 25 лет, имеющие повышенную квалификационную категорию, платят страховой взнос по сниженному тарифу".

Предположим, что при оценке степени близости, которая необходима для извлечения и последующего анализа прецедентов, возраст водителей разделяется на диапазоны, скажем "до 25 лет", "от 25 до 65 лет" и "свыше 65 лет". Эта мера близости оценит рассматриваемый нами случай и прецедент как очень похожие, поскольку совпадают возрастная категория и пол.

Можно протестировать это правило и на остальных прецедентах в библиотеке и оценить, какой процент выявленных прецедентов оно накрывает. Любой прецедент с мужчиной-водителем повышенной квалификационной категории, чей возраст не превышает 25 лет и который выплачивает взнос по повышенному тарифу, будет считаться исключением и, следовательно, снижать рейтинг прецедента. Если же случаи достаточно похожи, а правило достаточно точное, то аналогия считается "неотразимой" и компонент обработки прецедентов "выигрывает". В противном случае выигрыш будет за применяемым правилом, и в окончательном решении будет использован вариант, следующий из правила.

Таким образом, "неотразимость" зависит от трех факторов:

  • степени близости случаев, которая должна превышать определенный порог;
  • точности неявного правила, сформулированного в результате выявленной аналогии; в качестве меры точности берется пропорция прецедентов, которые подтверждают применение этого правила;
4 достоверности оценки точности, которая определяется размером выборки, на которой эта оценка сформирована.

Авторы продемонстрировали возможности предложенной архитектуры на примере задачи определения произношения имен. Реализованная ими система, получившая название ANAPRON, содержит около 650 лингвистических правил и 5000 прецедентов. Результаты испытания системы показали, что она обладает более высокой производительностью, чем системы-аналоги, использующие либо только правила, либо только прецеденты.



Содержание раздела