d9e5a92d

Будущее гибридных систем



23.5. Будущее гибридных систем


Итак, вы могли убедиться на представленном в этой главе материале, что гибридные системы потенциально являются довольно мощным инструментом решения сложных проблем, которые не под силу отдельным "чистым" подходам. На примере сравнения систем ODYSSEUS и EMYCIN вы могли убедиться в том, что в первой использована гораздо более сложная методология построения и настройки базы знаний, которая не идет ни в какое сравнение с методикой синтаксического контроля, примененной в EMYCIN. Предстоит еще очень много сделать в теории экспертных систем, прежде чем такие системы смогут эмулировать способность к постоянному совершенствованию, которой обладает человек-эксперт.

Аналогично, комбинирование парадигм использования правил и прецедентов позволяет повысить эффективность обработки исключений, не усложняя при этом набор правил.

В системе SCALIR продемонстрирована возможность комбинированного использования в рамках одной системы символического и субсимволического подходов, которые обычно рассматриваются многими специалистами как взаимно исключающие.

Следует надеяться, что в будущем мы станем свидетелями еще более значительного прогресса в этом направлении. Однако в теории искусственного интеллекта наблюдаются и тенденции движения в совершенно другом направлении, противоположном созданию гибридных систем. Имеет смысл здесь кратко упомянуть о них.

  • Программное обеспечение систем искусственного интеллекта в значительной мере привязано к определенным платформам и реализовано на языках, которые используются только в области искусственного интеллекта.
  • Методология разработки программного обеспечения систем искусственного интеллекта все еще отстает от современной практики создания программ, предполагающей использование объектно-ориентированного анализа и разработки, так же, как и технологии разработки распределенных многокомпонентных приложений.
  • Для программ систем искусственного интеллекта характерны все недостатки, присущие исследовательским продуктам, — отсутствие полноценной документации, низкая надежность, возможность использования только в организации, где она была создана.
Существует еще и психологический барьер, который трудно преодолеть современным исследователям, многие из которых стояли у истоков тех или иных подходов и не склонны переходить на сторону "конкурентов". Но этот барьер, скорее всего, будет преодолен новым поколением исследователей и разработчиков.



Содержание раздела