23.2.1. Оболочка экспертной системы MINERVA
MINERVA— это оболочка экспертной системы, разработанная на базе EMYCIN и NEOMYCIN (см. главы 10-12). Система MINERVA обеспечивает ODYSSEUS базой знаний и методом решения проблем и разработана специально для поддержки метода обучения EBL. Одно из главных отличий системы MINERVA от EMYCIN состоит в том, что в ней представлены не только знания о предметной области, но и стратегические знания, отражающие способ мышления практикующего врача. Такие знания можно рассматривать как дальнейшее развитие метаправил систем MYCIN, EMYCIN и NEOMYCIN.
Главным компонентом этой системы является база медицинских знаний о диагностировании менингита и других неврологических заболеваний. MINERVA реализована на языке PROLOG, и знания о предметной области представлены в этой системе в виде фраз Хорна (см. главу 8), но правила по содержанию аналогичны тем, что использовались в MYCIN. Например, следующее выражение представляет тот факт, что фотофобия может быть связана с головной болью:
conclude(migraine-headache, yes)
:- finding(photophobia, yes).
rule-applied(rulel63).
differential(migraine-headache, tension-headache).
Очевидно, что такая информация может быть представлена и зарегистрирована любым способом, например установкой флагов или переменных, но наиболее целесообразно использовать такое же представление, какое принято в базе знаний предметной области.
Несложное метаправило может быть представлено в следующем виде: goal(findout(Р)) :- not(concluded(P)), ask-user(P).
Это правило утверждает, что если текущая цель системы — найти значение параметра Р и если система не может прийти к заключению о значении этого параметра на основании имеющихся у нее знаний, то она должна запросить его у пользователя. Поскольку Р является переменной, то головная часть выражения goal (findout (Р)) сопоставляется с выражением цели системы, представленным в явном виде, например goal (f indout (temperature)). Подцели вроде not(concluded(P)) могут быть сопоставлены (успешно или нет) с системными данными, описывающими текущее состояние процесса вычислений, например concluded (temperature).
Такие стратегические знания используются для выработки суждения о текущем состоянии проблемы и принятия решения о том, располагает ли система в данном случае достаточными знаниями. Кроме того, наличие таких знаний упрощает программу обучения, которая может обращаться к структурам на метауровне экспертной системы.