Введение   Главы  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24   Приложения  1  2  

20.1. Индуктивное обучение



20.1. Индуктивное обучение


Точное определение термину "обучение" дать довольно трудно, но большинство авторов сходятся во мнении, что это — качество адаптивной системы, которая способна совершенствовать свое поведение (умение справляться с проблемами), накапливая опыт, например опыт решения аналогичных задач [Simon, 1983]. Таким образом, обучение — это одновременно и способность, и действие. Любая программа обучения должна обеспечивать возможность сохранять и анализировать полученный опыт решения проблем, а также обладать способностью применять сделанные выводы для решения новых проблем.

В работе [Carbonell et al, 1983] представлена классификация программ обучения на основе используемой стратегии. Попросту говоря, использованная стратегия зависит от того, насколько глубоко может программа проникнуть в суть той информации, которую она получает в процессе обучения.

На одном конце спектра находятся программы, которые обучаются, непосредственно воспринимая новые знания, и не выполняют при этом никакого логического анализа. Обычно такую методику обучения называют rote learning ("зубрежка", а программы соответственно — "зубрилками"). Аналогов такой методике в обычной жизни не счесть. Самый знакомый всем — зазубривание таблицы умножения (или "Отче наш..."). На другом конце спектра обучающих программ находятся те, которые пользуются методикой unsupervised learning, т.е. обучение без преподавателя. Под этим подразумевается способность формулировать теоремы, которая имеет очевидную аналогию с образом мышления человека, делающего научное открытие на основе эмпирических фактов.

В этой главе мы рассмотрим методики, лежащие посередине между этими двумя крайностями. Они получили наименование супервизорного обучения (supervised learning). Программам, использующим такую методику, демонстрируются ряд примеров. Программа должна проанализировать набор свойств этих примеров и идентифицировать подходящие концепты. Свойства примеров известны и представлены парами "атрибут-значение". "Надзор" за процессом обучения заключается, главным образом, в подборе репрезентативных примеров, т.е. в формировании пространства атрибутов, над которым будет размышлять программа.

Наиболее общая форма задач, решаемых в такой системе обучения, получила наименовании индукции (induction). Таким образом, индуктивная программа обучения — это программа, способная к обучению на основе обобщения свойств предъявляемых ей примеров (экземпляров, образцов). В работе [Michalski, 1983, р. 83] дано такое определение процессу обучения:

"Эвристический поиск в пространстве символических описаний, сформированный применением различных правил вывода к исходным наблюдаемым проявлениям".

Символические описания представляют собой, как правило, обобщения, которые можно сделать на основе наблюдаемых проявлений. Такие обобщения являются формой логического заключения, т.е. они предполагают выполнение определенных, регламентируемых некоторыми правилами трансформаций символических описаний, которые представляют наблюдаемые проявления. Одна из форм индуктивного обучения предусматривает демонстрацию примеров двух типов — тех, которые соответствуют концепту (позитивные экземпляры), и тех, которые ему не соответствуют (негативные экземпляры). Задача программы обучения — выявить или сконструировать подходящий концепт, т.е. такой, который включал бы все позитивные экземпляры и не включал ни одного негативного. Такой тип обучения получил название обучение концептам (concept learning).

Рассмотрим набор данных, представленный в табл. 20.1.



- Начало - - Назад - - Вперед -