Введение   Главы  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24   Приложения  1  2  

10.4. Приобретение новых знаний на основе существующих



10.4. Приобретение новых знаний на основе существующих

Мы еще не раз будем возвращаться к теме приобретения знаний, поскольку это одна из главных проблем проектирования экспертных систем. Мы еще увидим, что уроки, полученные при попытках расширить область применения технологии экспертных систем в различных направлениях, имеют прямое отношение к проблеме приобретения знаний. В частности, в ходе экспериментов по созданию интеллектуальных обучающих систем на основе технологии экспертных систем исследователи пришли к более глубокому пониманию того, какими видами знаний пользуется эксперт в процессе решения проблем. При создании инструментальных средств общего назначения, аналогичных EMYCIN и предназначенных для построения широкого класса экспертных систем, разработчики столкнулись с интересной проблемой: как преобразовать знания, имеющие отношение к любой проблемной области, во фреймы или порождающие правила.

Такие попытки заставили исследователей глубже проанализировать роль знаний о предметной области и специфических для нее правил логического вывода, в частности рассмотреть их с точки зрения разных стилей рассуждения, характерных для разных областей.

Забегая немного вперед, отметим: совершенно очевидно, что процесс приобретения знаний в значительной мере облегчается, если он также основывается на знаниях. Другими словами, программа извлечения знаний нуждается в некоторых базовых знаниях о той предметной области, в которой специализируется интервьюируемый эксперт. И точно такими же знаниями должен обладать инженер по знаниям. Только в этом случае он сможет достичь взаимопонимания в диалоге с экспертом.

Вряд ли стоит надеяться на то, что со временем появится такая методика извлечения знаний у эксперта, которая будет одинаково эффективна в любой предметной области. Знания, которыми нужно обладать для того, чтобы воспринимать новые знания, можно рассматривать как метазнания. В основном к ним относятся знания о структуре и стратегии, включая информацию о методах классификации явлений и сущностей в определенной предметной области (например, заболеваний) и способах выбора альтернативных действий (например, курсов терапии). Существуют также и отдельные знания, необходимые для того, чтобы объяснить, почему получено именно такое, а не иное решение проблемы (об этом будет подробно рассказано в главе 16).

Извлечение знаний посредством опроса экспертов на основе модели предметной области — отнюдь не последнее слово в автоматизации этого процесса. В дальнейших главах мы рассмотрим два других подхода:

  • стратегии приобретения знаний, ориентированные на определенный метод решения проблем;
  • машинное обучение, базирующееся на построении правил индукции, на наборе показательных примеров.
Тема приобретения знаний будет доминирующей в следующих пяти главах. Вы познакомитесь со множеством методов, которым авторы дали весьма экзотические названия, — "эвристическая классификация", "сопоставление", "предложение и применение", "предложение и проверка" и т.п. Каждый из этих методов оказывается эффективным в определенных условиях и рассчитан на разную стратегию приобретения знаний.

Обсуждение проблем машинного обучения мы отложим до главы 20, поскольку это слишком сложный материал для той части книги, которую мы рассматриваем как вводную.



- Начало - - Назад - - Вперед -